Cephes Mathematical Library

Up to home page:

Source code archives


single.zip: Single precision library.
Documentation for single.zip.
double.zip: Double precision library.
Documentation for double.zip.
ldouble.zip: 80-bit long double precision functions.
Documentation for ldouble.zip.
128bit.tgz: 128-bit long double precision functions.
Documentation for 128bit.tgz.
qlib.zip: Extended precision library.
Documentation for qlib.zip.

Long Double Precision Special Functions

Select function name for additional information. For other precisions, see the archives and descriptions listed above.
  • acoshl, Inverse hyperbolic cosine
  • arcdotl, Angle between two vectors
  • asinh, Inverse hyperbolic sine
  • asin, Inverse circular sine
  • acos, Inverse circular cosine
  • atanh, Inverse hyperbolic tangent
  • atan, Inverse circular tangent
  • atan2, Quadrant correct inverse circular tangent
  • bdtr, Binomial distribution
  • bdtrc, Complemented binomial distribution
  • bdtri, Inverse binomial distribution
  • btdtr, Beta distribution
  • cbrt, Cube root
  • chdtr, Chi-square distribution
  • chdtrc, Complemented Chi-square distribution
  • chdtri, Inverse of complemented Chi-square distribution
  • clog, Complex natural logarithm
  • cexp, Complex exponential function
  • csin, Complex circular sine
  • ccos, Complex circular cosine
  • ctan, Complex circular tangent
  • ccot, Complex circular cotangent
  • casin, Complex circular arc sine
  • cacos, Complex circular arc cosine
  • catan, Complex circular arc tangent
  • cmplx, Complex number arithmetic
  • cosh, Hyperbolic cosine
  • ellie, Incomplete elliptic integral of the second kind
  • ellik, Incomplete elliptic integral of the first kind
  • ellpe, Complete elliptic integral of the second kind
  • ellpj, Jacobian elliptic functions
  • ellpk, Complete elliptic integral of the first kind
  • exp10, Base 10 exponential function
  • exp2, Base 2 exponential function
  • exp, Exponential function
  • expm1, Exponential function, minus 1
  • expx2, Exponential function
  • fdtr, F distribution
  • fdtrc, Complemented F distribution
  • fdtri, Inverse of complemented F distribution
  • floor, Floor function
  • ceil, Ceil function
  • frexp, Extract exponent
  • ldexp, Apply exponent
  • fabs, Absolute value
  • gamma, Gamma function
  • lgam, Natural logarithm of gamma function
  • gdtr, Gamma distribution function
  • gdtrc, Complemented gamma distribution function
  • gels, Linear system with symmetric coefficient matrix
  • hyperg, Confluent hypergeometric function
  • ieee, Extended precision arithmetic
  • igami, Inverse of complemented imcomplete gamma integral
  • igam, Incomplete gamma integral
  • igamc, Complemented incomplete gamma integral
  • incbet, Incomplete beta integral
  • incbi, Inverse of imcomplete beta integral
  • isnan, Test for not a number
  • isfinite, Test for infinity
  • signbit, Extract sign
  • j0, Bessel function of order zero
  • y0, Bessel function of the second kind, order zero
  • j1, Bessel function of order one
  • y1, Bessel function of the second kind, order one
  • jn, Bessel function of integer order
  • ldrand, Pseudorandom number generator
  • log10, Common logarithm
  • log1p, Relative error logarithm
  • log2, Base 2 logarithm
  • log, Natural logarithm
  • mtherr, Library common error handling routine
  • nbdtr, Negative binomial distribution
  • nbdtrc, Complemented negative binomial distribution
  • nbdtri, Functional inverse of negative binomial distribution
  • ndtri, Inverse of normal distribution function
  • ndtr, Normal distribution function
  • erf, Error function
  • erfc, Complementary error function
  • pdtr, Poisson distribution function
  • pdtrc, Complemented Poisson distribution function
  • pdtri, Inverse of Poisson distribution function
  • polevl, Evaluate polynomial
  • p1evl, Evaluate polynomial
  • powi, Integer power function
  • pow, Power function
  • sinh, Hyperbolic sine
  • sin, Circular sine
  • cos, Circular cosine
  • sqrt, Square root
  • stdtr, Student's t distribution
  • stdtri, Functional inverse of Student's t distribution
  • tanh, Hyperbolic tangent
  • tan, Circular tangent
  • cot, Circular cotangent
  • cosm1, Relative error cosine
  • yn, Bessel function of second kind of integer order
  •  
    /*							acoshl.c
     *
     *	Inverse hyperbolic cosine, long double precision
     *
     *
     *
     * SYNOPSIS:
     *
     * long double x, y, acoshl();
     *
     * y = acoshl( x );
     *
     *
     *
     * DESCRIPTION:
     *
     * Returns inverse hyperbolic cosine of argument.
     *
     * If 1 <= x < 1.5, a rational approximation
     *
     *	sqrt(2z) * P(z)/Q(z)
     *
     * where z = x-1, is used.  Otherwise,
     *
     * acosh(x)  =  log( x + sqrt( (x-1)(x+1) ).
     *
     *
     *
     * ACCURACY:
     *
     *                      Relative error:
     * arithmetic   domain     # trials      peak         rms
     *    IEEE      1,3         30000       2.0e-19     3.9e-20
     *
     *
     * ERROR MESSAGES:
     *
     *   message         condition      value returned
     * acoshl domain      |x| < 1            0.0
     *
     */
    
     
    /*							arcdot.c
     *
     *	Angle between two vectors
     *
     *
     *
     *
     * SYNOPSIS:
     *
     * long double p[3], q[3], arcdotl();
     *
     * y = arcdotl( p, q );
     *
     *
     *
     * DESCRIPTION:
     *
     * For two vectors p, q, the angle A between them is given by
     *
     *      p.q / (|p| |q|)  = cos A  .
     *
     * where "." represents inner product, "|x|" the length of vector x.
     * If the angle is small, an expression in sin A is preferred.
     * Set r = q - p.  Then
     *
     *     p.q = p.p + p.r ,
     *
     *     |p|^2 = p.p ,
     *
     *     |q|^2 = p.p + 2 p.r + r.r ,
     *
     *                  p.p^2 + 2 p.p p.r + p.r^2
     *     cos^2 A  =  ----------------------------
     *                    p.p (p.p + 2 p.r + r.r)
     *
     *                  p.p + 2 p.r + p.r^2 / p.p
     *              =  --------------------------- ,
     *                     p.p + 2 p.r + r.r
     *
     *     sin^2 A  =  1 - cos^2 A
     *
     *                   r.r - p.r^2 / p.p
     *              =  --------------------
     *                  p.p + 2 p.r + r.r
     *
     *              =   (r.r - p.r^2 / p.p) / q.q  .
     *
     * ACCURACY:
     *
     * About 1 ULP.  See arcdot.c.
     *
     */
    
     
    /*							asinhl.c
     *
     *	Inverse hyperbolic sine, long double precision
     *
     *
     *
     * SYNOPSIS:
     *
     * long double x, y, asinhl();
     *
     * y = asinhl( x );
     *
     *
     *
     * DESCRIPTION:
     *
     * Returns inverse hyperbolic sine of argument.
     *
     * If |x| < 0.5, the function is approximated by a rational
     * form  x + x**3 P(x)/Q(x).  Otherwise,
     *
     *     asinh(x) = log( x + sqrt(1 + x*x) ).
     *
     *
     *
     * ACCURACY:
     *
     *                      Relative error:
     * arithmetic   domain     # trials      peak         rms
     *    IEEE     -3,3         30000       1.7e-19     3.5e-20
     *
     */
    
     
    /*							asinl.c
     *
     *	Inverse circular sine, long double precision
     *
     *
     *
     * SYNOPSIS:
     *
     * double x, y, asinl();
     *
     * y = asinl( x );
     *
     *
     *
     * DESCRIPTION:
     *
     * Returns radian angle between -pi/2 and +pi/2 whose sine is x.
     *
     * A rational function of the form x + x**3 P(x**2)/Q(x**2)
     * is used for |x| in the interval [0, 0.5].  If |x| > 0.5 it is
     * transformed by the identity
     *
     *    asin(x) = pi/2 - 2 asin( sqrt( (1-x)/2 ) ).
     *
     *
     * ACCURACY:
     *
     *                      Relative error:
     * arithmetic   domain     # trials      peak         rms
     *    IEEE     -1, 1        30000       2.7e-19     4.8e-20
     *
     *
     * ERROR MESSAGES:
     *
     *   message         condition      value returned
     * asinl domain        |x| > 1           NANL
     *
     */
    
     
    /*							acosl()
     *
     *	Inverse circular cosine, long double precision
     *
     *
     *
     * SYNOPSIS:
     *
     * double x, y, acosl();
     *
     * y = acosl( x );
     *
     *
     *
     * DESCRIPTION:
     *
     * Returns radian angle between -pi/2 and +pi/2 whose cosine
     * is x.
     *
     * Analytically, acos(x) = pi/2 - asin(x).  However if |x| is
     * near 1, there is cancellation error in subtracting asin(x)
     * from pi/2.  Hence if x < -0.5,
     *
     *    acos(x) =	 pi - 2.0 * asin( sqrt((1+x)/2) );
     *
     * or if x > +0.5,
     *
     *    acos(x) =	 2.0 * asin(  sqrt((1-x)/2) ).
     *
     *
     * ACCURACY:
     *
     *                      Relative error:
     * arithmetic   domain     # trials      peak         rms
     *    IEEE      -1, 1       30000       1.4e-19     3.5e-20
     *
     *
     * ERROR MESSAGES:
     *
     *   message         condition      value returned
     * acosl domain        |x| > 1           NANL
     */
    
     
    /*							atanhl.c
     *
     *	Inverse hyperbolic tangent, long double precision
     *
     *
     *
     * SYNOPSIS:
     *
     * long double x, y, atanhl();
     *
     * y = atanhl( x );
     *
     *
     *
     * DESCRIPTION:
     *
     * Returns inverse hyperbolic tangent of argument in the range
     * MINLOGL to MAXLOGL.
     *
     * If |x| < 0.5, the rational form x + x**3 P(x)/Q(x) is
     * employed.  Otherwise,
     *        atanh(x) = 0.5 * log( (1+x)/(1-x) ).
     *
     *
     *
     * ACCURACY:
     *
     *                      Relative error:
     * arithmetic   domain     # trials      peak         rms
     *    IEEE      -1,1        30000       1.1e-19     3.3e-20
     *
     */
    
     
    /*							atanl.c
     *
     *	Inverse circular tangent, long double precision
     *      (arctangent)
     *
     *
     *
     * SYNOPSIS:
     *
     * long double x, y, atanl();
     *
     * y = atanl( x );
     *
     *
     *
     * DESCRIPTION:
     *
     * Returns radian angle between -pi/2 and +pi/2 whose tangent
     * is x.
     *
     * Range reduction is from four intervals into the interval
     * from zero to  tan( pi/8 ).  The approximant uses a rational
     * function of degree 3/4 of the form x + x**3 P(x)/Q(x).
     *
     *
     *
     * ACCURACY:
     *
     *                      Relative error:
     * arithmetic   domain     # trials      peak         rms
     *    IEEE      -10, 10    150000       1.3e-19     3.0e-20
     *
     */
    
     
    /*							atan2l()
     *
     *	Quadrant correct inverse circular tangent,
     *	long double precision
     *
     *
     *
     * SYNOPSIS:
     *
     * long double x, y, z, atan2l();
     *
     * z = atan2l( y, x );
     *
     *
     *
     * DESCRIPTION:
     *
     * Returns radian angle whose tangent is y/x.
     * Define compile time symbol ANSIC = 1 for ANSI standard,
     * range -PI < z <= +PI, args (y,x); else ANSIC = 0 for range
     * 0 to 2PI, args (x,y).
     *
     *
     *
     * ACCURACY:
     *
     *                      Relative error:
     * arithmetic   domain     # trials      peak         rms
     *    IEEE      -10, 10     60000       1.7e-19     3.2e-20
     * See atan.c.
     *
     */
    
     
    /*							bdtrl.c
     *
     *	Binomial distribution
     *
     *
     *
     * SYNOPSIS:
     *
     * int k, n;
     * long double p, y, bdtrl();
     *
     * y = bdtrl( k, n, p );
     *
     *
     *
     * DESCRIPTION:
     *
     * Returns the sum of the terms 0 through k of the Binomial
     * probability density:
     *
     *   k
     *   --  ( n )   j      n-j
     *   >   (   )  p  (1-p)
     *   --  ( j )
     *  j=0
     *
     * The terms are not summed directly; instead the incomplete
     * beta integral is employed, according to the formula
     *
     * y = bdtr( k, n, p ) = incbet( n-k, k+1, 1-p ).
     *
     * The arguments must be positive, with p ranging from 0 to 1.
     *
     *
     *
     * ACCURACY:
     *
     * Tested at random points (k,n,p) with a and b between 0
     * and 10000 and p between 0 and 1.
     *    Relative error:
     * arithmetic   domain     # trials      peak         rms
     *    IEEE      0,10000      3000       1.6e-14     2.2e-15
     *
     * ERROR MESSAGES:
     *
     *   message         condition      value returned
     * bdtrl domain        k < 0            0.0
     *                     n < k
     *                     x < 0, x > 1
     *
     */
    
     
    /*							bdtrcl()
     *
     *	Complemented binomial distribution
     *
     *
     *
     * SYNOPSIS:
     *
     * int k, n;
     * long double p, y, bdtrcl();
     *
     * y = bdtrcl( k, n, p );
     *
     *
     *
     * DESCRIPTION:
     *
     * Returns the sum of the terms k+1 through n of the Binomial
     * probability density:
     *
     *   n
     *   --  ( n )   j      n-j
     *   >   (   )  p  (1-p)
     *   --  ( j )
     *  j=k+1
     *
     * The terms are not summed directly; instead the incomplete
     * beta integral is employed, according to the formula
     *
     * y = bdtrc( k, n, p ) = incbet( k+1, n-k, p ).
     *
     * The arguments must be positive, with p ranging from 0 to 1.
     *
     *
     *
     * ACCURACY:
     *
     * See incbet.c.
     *
     * ERROR MESSAGES:
     *
     *   message         condition      value returned
     * bdtrcl domain     x<0, x>1, n<k       0.0
     */
    
     
    /*							bdtril()
     *
     *	Inverse binomial distribution
     *
     *
     *
     * SYNOPSIS:
     *
     * int k, n;
     * long double p, y, bdtril();
     *
     * p = bdtril( k, n, y );
     *
     *
     *
     * DESCRIPTION:
     *
     * Finds the event probability p such that the sum of the
     * terms 0 through k of the Binomial probability density
     * is equal to the given cumulative probability y.
     *
     * This is accomplished using the inverse beta integral
     * function and the relation
     *
     * 1 - p = incbi( n-k, k+1, y ).
     *
     * ACCURACY:
     *
     * See incbi.c.
     * Tested at random k, n between 1 and 10000.  The "domain" refers to p:
     *                      Relative error:
     * arithmetic   domain     # trials      peak         rms
     *    IEEE       0,1        3500       2.0e-15     8.2e-17
     *
     * ERROR MESSAGES:
     *
     *   message         condition      value returned
     * bdtril domain     k < 0, n <= k         0.0
     *                  x < 0, x > 1
     */
    
     
    /*							btdtrl.c
     *
     *	Beta distribution
     *
     *
     *
     * SYNOPSIS:
     *
     * long double a, b, x, y, btdtrl();
     *
     * y = btdtrl( a, b, x );
     *
     *
     *
     * DESCRIPTION:
     *
     * Returns the area from zero to x under the beta density
     * function:
     *
     *
     *                          x
     *            -             -
     *           | (a+b)       | |  a-1      b-1
     * P(x)  =  ----------     |   t    (1-t)    dt
     *           -     -     | |
     *          | (a) | (b)   -
     *                         0
     *
     *
     * The mean value of this distribution is a/(a+b).  The variance
     * is ab/[(a+b)^2 (a+b+1)].
     *
     * This function is identical to the incomplete beta integral
     * function, incbetl(a, b, x).
     *
     * The complemented function is
     *
     * 1 - P(1-x)  =  incbetl( b, a, x );
     *
     *
     * ACCURACY:
     *
     * See incbetl.c.
     *
     */
    
     
    /*							cbrtl.c
     *
     *	Cube root, long double precision
     *
     *
     *
     * SYNOPSIS:
     *
     * long double x, y, cbrtl();
     *
     * y = cbrtl( x );
     *
     *
     *
     * DESCRIPTION:
     *
     * Returns the cube root of the argument, which may be negative.
     *
     * Range reduction involves determining the power of 2 of
     * the argument.  A polynomial of degree 2 applied to the
     * mantissa, and multiplication by the cube root of 1, 2, or 4
     * approximates the root to within about 0.1%.  Then Newton's
     * iteration is used three times to converge to an accurate
     * result.
     *
     *
     *
     * ACCURACY:
     *
     *                      Relative error:
     * arithmetic   domain     # trials      peak         rms
     *    IEEE     .125,8        80000      7.0e-20     2.2e-20
     *    IEEE    exp(+-707)    100000      7.0e-20     2.4e-20
     *
     */
    
     
    /*							chdtrl.c
     *
     *	Chi-square distribution
     *
     *
     *
     * SYNOPSIS:
     *
     * long double df, x, y, chdtrl();
     *
     * y = chdtrl( df, x );
     *
     *
     *
     * DESCRIPTION:
     *
     * Returns the area under the left hand tail (from 0 to x)
     * of the Chi square probability density function with
     * v degrees of freedom.
     *
     *
     *                                  inf.
     *                                    -
     *                        1          | |  v/2-1  -t/2
     *  P( x | v )   =   -----------     |   t      e     dt
     *                    v/2  -       | |
     *                   2    | (v/2)   -
     *                                   x
     *
     * where x is the Chi-square variable.
     *
     * The incomplete gamma integral is used, according to the
     * formula
     *
     *	y = chdtr( v, x ) = igam( v/2.0, x/2.0 ).
     *
     *
     * The arguments must both be positive.
     *
     *
     *
     * ACCURACY:
     *
     * See igam().
     *
     * ERROR MESSAGES:
     *
     *   message         condition      value returned
     * chdtr domain   x < 0 or v < 1        0.0
     */
    
     
    /*							chdtrcl()
     *
     *	Complemented Chi-square distribution
     *
     *
     *
     * SYNOPSIS:
     *
     * long double v, x, y, chdtrcl();
     *
     * y = chdtrcl( v, x );
     *
     *
     *
     * DESCRIPTION:
     *
     * Returns the area under the right hand tail (from x to
     * infinity) of the Chi square probability density function
     * with v degrees of freedom:
     *
     *
     *                                  inf.
     *                                    -
     *                        1          | |  v/2-1  -t/2
     *  P( x | v )   =   -----------     |   t      e     dt
     *                    v/2  -       | |
     *                   2    | (v/2)   -
     *                                   x
     *
     * where x is the Chi-square variable.
     *
     * The incomplete gamma integral is used, according to the
     * formula
     *
     *	y = chdtr( v, x ) = igamc( v/2.0, x/2.0 ).
     *
     *
     * The arguments must both be positive.
     *
     *
     *
     * ACCURACY:
     *
     * See igamc().
     *
     * ERROR MESSAGES:
     *
     *   message         condition      value returned
     * chdtrc domain  x < 0 or v < 1        0.0
     */
    
     
    /*							chdtril()
     *
     *	Inverse of complemented Chi-square distribution
     *
     *
     *
     * SYNOPSIS:
     *
     * long double df, x, y, chdtril();
     *
     * x = chdtril( df, y );
     *
     *
     *
     *
     * DESCRIPTION:
     *
     * Finds the Chi-square argument x such that the integral
     * from x to infinity of the Chi-square density is equal
     * to the given cumulative probability y.
     *
     * This is accomplished using the inverse gamma integral
     * function and the relation
     *
     *    x/2 = igami( df/2, y );
     *
     *
     *
     *
     * ACCURACY:
     *
     * See igami.c.
     *
     * ERROR MESSAGES:
     *
     *   message         condition      value returned
     * chdtri domain   y < 0 or y > 1        0.0
     *                     v < 1
     *
     */
    
     
    /*							clogl.c
     *
     *	Complex natural logarithm
     *
     *
     *
     * SYNOPSIS:
     *
     * void clogl();
     * cmplxl z, w;
     *
     * clogl( &z, &w );
     *
     *
     *
     * DESCRIPTION:
     *
     * Returns complex logarithm to the base e (2.718...) of
     * the complex argument x.
     *
     * If z = x + iy, r = sqrt( x**2 + y**2 ),
     * then
     *       w = log(r) + i arctan(y/x).
     * 
     * The arctangent ranges from -PI to +PI.
     *
     *
     * ACCURACY:
     *
     *                      Relative error:
     * arithmetic   domain     # trials      peak         rms
     *    DEC       -10,+10      7000       8.5e-17     1.9e-17
     *    IEEE      -10,+10     30000       5.0e-15     1.1e-16
     *
     * Larger relative error can be observed for z near 1 +i0.
     * In IEEE arithmetic the peak absolute error is 5.2e-16, rms
     * absolute error 1.0e-16.
     */
    
     
    /*							cexpl()
     *
     *	Complex exponential function
     *
     *
     *
     * SYNOPSIS:
     *
     * void cexpl();
     * cmplxl z, w;
     *
     * cexpl( &z, &w );
     *
     *
     *
     * DESCRIPTION:
     *
     * Returns the exponential of the complex argument z
     * into the complex result w.
     *
     * If
     *     z = x + iy,
     *     r = exp(x),
     *
     * then
     *
     *     w = r cos y + i r sin y.
     *
     *
     * ACCURACY:
     *
     *                      Relative error:
     * arithmetic   domain     # trials      peak         rms
     *    DEC       -10,+10      8700       3.7e-17     1.1e-17
     *    IEEE      -10,+10     30000       3.0e-16     8.7e-17
     *
     */
    
     
    /*							csinl()
     *
     *	Complex circular sine
     *
     *
     *
     * SYNOPSIS:
     *
     * void csinl();
     * cmplxl z, w;
     *
     * csinl( &z, &w );
     *
     *
     *
     * DESCRIPTION:
     *
     * If
     *     z = x + iy,
     *
     * then
     *
     *     w = sin x  cosh y  +  i cos x sinh y.
     *
     *
     *
     * ACCURACY:
     *
     *                      Relative error:
     * arithmetic   domain     # trials      peak         rms
     *    DEC       -10,+10      8400       5.3e-17     1.3e-17
     *    IEEE      -10,+10     30000       3.8e-16     1.0e-16
     * Also tested by csin(casin(z)) = z.
     *
     */
    
     
    /*							ccosl()
     *
     *	Complex circular cosine
     *
     *
     *
     * SYNOPSIS:
     *
     * void ccosl();
     * cmplxl z, w;
     *
     * ccosl( &z, &w );
     *
     *
     *
     * DESCRIPTION:
     *
     * If
     *     z = x + iy,
     *
     * then
     *
     *     w = cos x  cosh y  -  i sin x sinh y.
     *
     *
     *
     * ACCURACY:
     *
     *                      Relative error:
     * arithmetic   domain     # trials      peak         rms
     *    DEC       -10,+10      8400       4.5e-17     1.3e-17
     *    IEEE      -10,+10     30000       3.8e-16     1.0e-16
     */
    
     
    /*							ctanl()
     *
     *	Complex circular tangent
     *
     *
     *
     * SYNOPSIS:
     *
     * void ctanl();
     * cmplxl z, w;
     *
     * ctanl( &z, &w );
     *
     *
     *
     * DESCRIPTION:
     *
     * If
     *     z = x + iy,
     *
     * then
     *
     *           sin 2x  +  i sinh 2y
     *     w  =  --------------------.
     *            cos 2x  +  cosh 2y
     *
     * On the real axis the denominator is zero at odd multiples
     * of PI/2.  The denominator is evaluated by its Taylor
     * series near these points.
     *
     *
     * ACCURACY:
     *
     *                      Relative error:
     * arithmetic   domain     # trials      peak         rms
     *    DEC       -10,+10      5200       7.1e-17     1.6e-17
     *    IEEE      -10,+10     30000       7.2e-16     1.2e-16
     * Also tested by ctan * ccot = 1 and catan(ctan(z))  =  z.
     */
    
     
    /*							ccotl()
     *
     *	Complex circular cotangent
     *
     *
     *
     * SYNOPSIS:
     *
     * void ccotl();
     * cmplxl z, w;
     *
     * ccotl( &z, &w );
     *
     *
     *
     * DESCRIPTION:
     *
     * If
     *     z = x + iy,
     *
     * then
     *
     *           sin 2x  -  i sinh 2y
     *     w  =  --------------------.
     *            cosh 2y  -  cos 2x
     *
     * On the real axis, the denominator has zeros at even
     * multiples of PI/2.  Near these points it is evaluated
     * by a Taylor series.
     *
     *
     * ACCURACY:
     *
     *                      Relative error:
     * arithmetic   domain     # trials      peak         rms
     *    DEC       -10,+10      3000       6.5e-17     1.6e-17
     *    IEEE      -10,+10     30000       9.2e-16     1.2e-16
     * Also tested by ctan * ccot = 1 + i0.
     */
    
     
    /*							casinl()
     *
     *	Complex circular arc sine
     *
     *
     *
     * SYNOPSIS:
     *
     * void casinl();
     * cmplxl z, w;
     *
     * casinl( &z, &w );
     *
     *
     *
     * DESCRIPTION:
     *
     * Inverse complex sine:
     *
     *                               2
     * w = -i clog( iz + csqrt( 1 - z ) ).
     *
     *
     * ACCURACY:
     *
     *                      Relative error:
     * arithmetic   domain     # trials      peak         rms
     *    DEC       -10,+10     10100       2.1e-15     3.4e-16
     *    IEEE      -10,+10     30000       2.2e-14     2.7e-15
     * Larger relative error can be observed for z near zero.
     * Also tested by csin(casin(z)) = z.
     */
    
     
    /*							cacosl()
     *
     *	Complex circular arc cosine
     *
     *
     *
     * SYNOPSIS:
     *
     * void cacosl();
     * cmplxl z, w;
     *
     * cacosl( &z, &w );
     *
     *
     *
     * DESCRIPTION:
     *
     *
     * w = arccos z  =  PI/2 - arcsin z.
     *
     *
     *
     *
     * ACCURACY:
     *
     *                      Relative error:
     * arithmetic   domain     # trials      peak         rms
     *    DEC       -10,+10      5200      1.6e-15      2.8e-16
     *    IEEE      -10,+10     30000      1.8e-14      2.2e-15
     */
    
     
    /*							catanl()
     *
     *	Complex circular arc tangent
     *
     *
     *
     * SYNOPSIS:
     *
     * void catanl();
     * cmplxl z, w;
     *
     * catanl( &z, &w );
     *
     *
     *
     * DESCRIPTION:
     *
     * If
     *     z = x + iy,
     *
     * then
     *          1       (    2x     )
     * Re w  =  - arctan(-----------)  +  k PI
     *          2       (     2    2)
     *                  (1 - x  - y )
     *
     *               ( 2         2)
     *          1    (x  +  (y+1) )
     * Im w  =  - log(------------)
     *          4    ( 2         2)
     *               (x  +  (y-1) )
     *
     * Where k is an arbitrary integer.
     *
     *
     *
     * ACCURACY:
     *
     *                      Relative error:
     * arithmetic   domain     # trials      peak         rms
     *    DEC       -10,+10      5900       1.3e-16     7.8e-18
     *    IEEE      -10,+10     30000       2.3e-15     8.5e-17
     * The check catan( ctan(z) )  =  z, with |x| and |y| < PI/2,
     * had peak relative error 1.5e-16, rms relative error
     * 2.9e-17.  See also clog().
     */
    
     
    /*							cmplxl.c
     *
     *	Complex number arithmetic
     *
     *
     *
     * SYNOPSIS:
     *
     * typedef struct {
     *      long double r;     real part
     *      long double i;     imaginary part
     *     }cmplxl;
     *
     * cmplxl *a, *b, *c;
     *
     * caddl( a, b, c );     c = b + a
     * csubl( a, b, c );     c = b - a
     * cmull( a, b, c );     c = b * a
     * cdivl( a, b, c );     c = b / a
     * cnegl( c );           c = -c
     * cmovl( b, c );        c = b
     *
     *
     *
     * DESCRIPTION:
     *
     * Addition:
     *    c.r  =  b.r + a.r
     *    c.i  =  b.i + a.i
     *
     * Subtraction:
     *    c.r  =  b.r - a.r
     *    c.i  =  b.i - a.i
     *
     * Multiplication:
     *    c.r  =  b.r * a.r  -  b.i * a.i
     *    c.i  =  b.r * a.i  +  b.i * a.r
     *
     * Division:
     *    d    =  a.r * a.r  +  a.i * a.i
     *    c.r  = (b.r * a.r  + b.i * a.i)/d
     *    c.i  = (b.i * a.r  -  b.r * a.i)/d
     * ACCURACY:
     *
     * In DEC arithmetic, the test (1/z) * z = 1 had peak relative
     * error 3.1e-17, rms 1.2e-17.  The test (y/z) * (z/y) = 1 had
     * peak relative error 8.3e-17, rms 2.1e-17.
     *
     * Tests in the rectangle {-10,+10}:
     *                      Relative error:
     * arithmetic   function  # trials      peak         rms
     *    DEC        cadd       10000       1.4e-17     3.4e-18
     *    IEEE       cadd      100000       1.1e-16     2.7e-17
     *    DEC        csub       10000       1.4e-17     4.5e-18
     *    IEEE       csub      100000       1.1e-16     3.4e-17
     *    DEC        cmul        3000       2.3e-17     8.7e-18
     *    IEEE       cmul      100000       2.1e-16     6.9e-17
     *    DEC        cdiv       18000       4.9e-17     1.3e-17
     *    IEEE       cdiv      100000       3.7e-16     1.1e-16
     */
    
     
    /*							coshl.c
     *
     *	Hyperbolic cosine, long double precision
     *
     *
     *
     * SYNOPSIS:
     *
     * long double x, y, coshl();
     *
     * y = coshl( x );
     *
     *
     *
     * DESCRIPTION:
     *
     * Returns hyperbolic cosine of argument in the range MINLOGL to
     * MAXLOGL.
     *
     * cosh(x)  =  ( exp(x) + exp(-x) )/2.
     *
     *
     *
     * ACCURACY:
     *
     *                      Relative error:
     * arithmetic   domain     # trials      peak         rms
     *    IEEE     +-10000      30000       1.1e-19     2.8e-20
     *
     *
     * ERROR MESSAGES:
     *
     *   message         condition              value returned
     * cosh overflow    |x| > MAXLOGL+LOGE2L      INFINITYL
     *
     *
     */
    
     
    /*							elliel.c
     *
     *	Incomplete elliptic integral of the second kind
     *
     *
     *
     * SYNOPSIS:
     *
     * long double phi, m, y, elliel();
     *
     * y = elliel( phi, m );
     *
     *
     *
     * DESCRIPTION:
     *
     * Approximates the integral
     *
     *
     *                phi
     *                 -
     *                | |
     *                |                   2
     * E(phi_\m)  =    |    sqrt( 1 - m sin t ) dt
     *                |
     *              | |    
     *               -
     *                0
     *
     * of amplitude phi and modulus m, using the arithmetic -
     * geometric mean algorithm.
     *
     *
     *
     * ACCURACY:
     *
     * Tested at random arguments with phi in [-10, 10] and m in
     * [0, 1].
     *                      Relative error:
     * arithmetic   domain     # trials      peak         rms
     *    IEEE     -10,10       50000       2.7e-18     2.3e-19
     *
     *
     */
    
     
    /*							ellikl.c
     *
     *	Incomplete elliptic integral of the first kind
     *
     *
     *
     * SYNOPSIS:
     *
     * long double phi, m, y, ellikl();
     *
     * y = ellikl( phi, m );
     *
     *
     *
     * DESCRIPTION:
     *
     * Approximates the integral
     *
     *
     *
     *                phi
     *                 -
     *                | |
     *                |           dt
     * F(phi_\m)  =    |    ------------------
     *                |                   2
     *              | |    sqrt( 1 - m sin t )
     *               -
     *                0
     *
     * of amplitude phi and modulus m, using the arithmetic -
     * geometric mean algorithm.
     *
     *
     *
     *
     * ACCURACY:
     *
     * Tested at random points with m in [0, 1] and phi as indicated.
     *
     *                      Relative error:
     * arithmetic   domain     # trials      peak         rms
     *    IEEE     -10,10        30000      3.6e-18     4.1e-19
     *
     *
     */
    
     
    /*							ellpel.c
     *
     *	Complete elliptic integral of the second kind
     *
     *
     *
     * SYNOPSIS:
     *
     * long double m1, y, ellpel();
     *
     * y = ellpel( m1 );
     *
     *
     *
     * DESCRIPTION:
     *
     * Approximates the integral
     *
     *
     *            pi/2
     *             -
     *            | |                 2
     * E(m)  =    |    sqrt( 1 - m sin t ) dt
     *          | |    
     *           -
     *            0
     *
     * Where m = 1 - m1, using the approximation
     *
     *      P(x)  -  x log x Q(x).
     *
     * Though there are no singularities, the argument m1 is used
     * rather than m for compatibility with ellpk().
     *
     * E(1) = 1; E(0) = pi/2.
     *
     *
     * ACCURACY:
     *
     *                      Relative error:
     * arithmetic   domain     # trials      peak         rms
     *    IEEE       0, 1       10000       1.1e-19     3.5e-20
     *
     *
     * ERROR MESSAGES:
     *
     *   message         condition      value returned
     * ellpel domain     x<0, x>1            0.0
     *
     */
    
     
    /*							ellpjl.c
     *
     *	Jacobian Elliptic Functions
     *
     *
     *
     * SYNOPSIS:
     *
     * long double u, m, sn, cn, dn, phi;
     * int ellpjl();
     *
     * ellpjl( u, m, &sn, &cn, &dn, &phi );
     *
     *
     *
     * DESCRIPTION:
     *
     *
     * Evaluates the Jacobian elliptic functions sn(u|m), cn(u|m),
     * and dn(u|m) of parameter m between 0 and 1, and real
     * argument u.
     *
     * These functions are periodic, with quarter-period on the
     * real axis equal to the complete elliptic integral
     * ellpk(1.0-m).
     *
     * Relation to incomplete elliptic integral:
     * If u = ellik(phi,m), then sn(u|m) = sin(phi),
     * and cn(u|m) = cos(phi).  Phi is called the amplitude of u.
     *
     * Computation is by means of the arithmetic-geometric mean
     * algorithm, except when m is within 1e-12 of 0 or 1.  In the
     * latter case with m close to 1, the approximation applies
     * only for phi < pi/2.
     *
     * ACCURACY:
     *
     * Tested at random points with u between 0 and 10, m between
     * 0 and 1.
     *
     *            Absolute error (* = relative error):
     * arithmetic   function   # trials      peak         rms
     *    IEEE      sn          10000       1.7e-18     2.3e-19
     *    IEEE      cn          20000       1.6e-18     2.2e-19
     *    IEEE      dn         100000       2.9e-18     9.1e-20
     *    IEEE      phi         10000       4.0e-19*    6.6e-20*
     *
     * Accuracy deteriorates when u is large.
     * Larger errors occur for m near 1.
     *
     */
    
     
    /*							ellpkl.c
     *
     *	Complete elliptic integral of the first kind
     *
     *
     *
     * SYNOPSIS:
     *
     * long double m1, y, ellpkl();
     *
     * y = ellpkl( m1 );
     *
     *
     *
     * DESCRIPTION:
     *
     * Approximates the integral
     *
     *
     *
     *            pi/2
     *             -
     *            | |
     *            |           dt
     * K(m)  =    |    ------------------
     *            |                   2
     *          | |    sqrt( 1 - m sin t )
     *           -
     *            0
     *
     * where m = 1 - m1, using the approximation
     *
     *     P(x)  -  log x Q(x).
     *
     * The argument m1 is used rather than m so that the logarithmic
     * singularity at m = 1 will be shifted to the origin; this
     * preserves maximum accuracy.
     *
     * K(0) = pi/2.
     *
     * ACCURACY:
     *
     *                      Relative error:
     * arithmetic   domain     # trials      peak         rms
     *    IEEE       0,1        10000       1.1e-19     3.3e-20
     *
     * ERROR MESSAGES:
     *
     *   message         condition      value returned
     * ellpkl domain      x<0, x>1           0.0
     *
     */
    
     
    /*							exp10l.c
     *
     *	Base 10 exponential function, long double precision
     *      (Common antilogarithm)
     *
     *
     *
     * SYNOPSIS:
     *
     * long double x, y, exp10l()
     *
     * y = exp10l( x );
     *
     *
     *
     * DESCRIPTION:
     *
     * Returns 10 raised to the x power.
     *
     * Range reduction is accomplished by expressing the argument
     * as 10**x = 2**n 10**f, with |f| < 0.5 log10(2).
     * The Pade' form
     *
     *     1 + 2x P(x**2)/( Q(x**2) - P(x**2) )
     *
     * is used to approximate 10**f.
     *
     *
     *
     * ACCURACY:
     *
     *                      Relative error:
     * arithmetic   domain     # trials      peak         rms
     *    IEEE      +-4900      30000       1.0e-19     2.7e-20
     *
     * ERROR MESSAGES:
     *
     *   message         condition      value returned
     * exp10l underflow    x < -MAXL10        0.0
     * exp10l overflow     x > MAXL10       MAXNUM
     *
     * IEEE arithmetic: MAXL10 = 4932.0754489586679023819
     *
     */
    
     
    /*							exp2l.c
     *
     *	Base 2 exponential function, long double precision
     *
     *
     *
     * SYNOPSIS:
     *
     * long double x, y, exp2l();
     *
     * y = exp2l( x );
     *
     *
     *
     * DESCRIPTION:
     *
     * Returns 2 raised to the x power.
     *
     * Range reduction is accomplished by separating the argument
     * into an integer k and fraction f such that
     *     x    k  f
     *    2  = 2  2.
     *
     * A Pade' form
     *
     *   1 + 2x P(x**2) / (Q(x**2) - x P(x**2) )
     *
     * approximates 2**x in the basic range [-0.5, 0.5].
     *
     *
     * ACCURACY:
     *
     *                      Relative error:
     * arithmetic   domain     # trials      peak         rms
     *    IEEE      +-16300     300000      9.1e-20     2.6e-20
     *
     *
     * See exp.c for comments on error amplification.
     *
     *
     * ERROR MESSAGES:
     *
     *   message         condition      value returned
     * exp2l underflow   x < -16382        0.0
     * exp2l overflow    x >= 16384       MAXNUM
     *
     */
    
     
    /*							expl.c
     *
     *	Exponential function, long double precision
     *
     *
     *
     * SYNOPSIS:
     *
     * long double x, y, expl();
     *
     * y = expl( x );
     *
     *
     *
     * DESCRIPTION:
     *
     * Returns e (2.71828...) raised to the x power.
     *
     * Range reduction is accomplished by separating the argument
     * into an integer k and fraction f such that
     *
     *     x    k  f
     *    e  = 2  e.
     *
     * A Pade' form of degree 2/3 is used to approximate exp(f) - 1
     * in the basic range [-0.5 ln 2, 0.5 ln 2].
     *
     *
     * ACCURACY:
     *
     *                      Relative error:
     * arithmetic   domain     # trials      peak         rms
     *    IEEE      +-10000     50000       1.12e-19    2.81e-20
     *
     *
     * Error amplification in the exponential function can be
     * a serious matter.  The error propagation involves
     * exp( X(1+delta) ) = exp(X) ( 1 + X*delta + ... ),
     * which shows that a 1 lsb error in representing X produces
     * a relative error of X times 1 lsb in the function.
     * While the routine gives an accurate result for arguments
     * that are exactly represented by a long double precision
     * computer number, the result contains amplified roundoff
     * error for large arguments not exactly represented.
     *
     *
     * ERROR MESSAGES:
     *
     *   message         condition      value returned
     * exp underflow    x < MINLOG         0.0
     * exp overflow     x > MAXLOG         MAXNUM
     *
     */
    
     
    /*							expm1l.c
     *
     *	Exponential function, minus 1
     *      Long double precision
     *
     *
     * SYNOPSIS:
     *
     * long double x, y, expm1l();
     *
     * y = expm1l( x );
     *
     *
     *
     * DESCRIPTION:
     *
     * Returns e (2.71828...) raised to the x power, minus 1.
     *
     * Range reduction is accomplished by separating the argument
     * into an integer k and fraction f such that 
     *
     *     x    k  f
     *    e  = 2  e.
     *
     * An expansion x + .5 x^2 + x^3 R(x) approximates exp(f) - 1
     * in the basic range [-0.5 ln 2, 0.5 ln 2].
     *
     *
     * ACCURACY:
     *
     *                      Relative error:
     * arithmetic   domain     # trials      peak         rms
     *    IEEE    -45,+MAXLOG   200,000     1.2e-19     2.5e-20
     *
     * ERROR MESSAGES:
     *
     *   message         condition      value returned
     * expm1l overflow   x > MAXLOG         MAXNUM
     *
     */
    
     
    /*							expx2l.c
     *
     *	Exponential of squared argument
     *
     *
     *
     * SYNOPSIS:
     *
     * long double x, y, expx2l();
     * int sign;
     *
     * y = expx2l( x, sign );
     *
     *
     *
     * DESCRIPTION:
     *
     * Computes y = exp(x*x) while suppressing error amplification
     * that would ordinarily arise from the inexactness of the
     * exponential argument x*x.
     *
     * If sign < 0, the result is inverted; i.e., y = exp(-x*x) .
     *
     *
     * ACCURACY:
     *
     *                      Relative error:
     * arithmetic      domain        # trials      peak         rms
     *   IEEE     -106.566, 106.566    10^5       1.6e-19     4.4e-20
     *
     */
    
     
    /*							fdtrl.c
     *
     *	F distribution, long double precision
     *
     *
     *
     * SYNOPSIS:
     *
     * int df1, df2;
     * long double x, y, fdtrl();
     *
     * y = fdtrl( df1, df2, x );
     *
     *
     *
     * DESCRIPTION:
     *
     * Returns the area from zero to x under the F density
     * function (also known as Snedcor's density or the
     * variance ratio density).  This is the density
     * of x = (u1/df1)/(u2/df2), where u1 and u2 are random
     * variables having Chi square distributions with df1
     * and df2 degrees of freedom, respectively.
     *
     * The incomplete beta integral is used, according to the
     * formula
     *
     *	P(x) = incbetl( df1/2, df2/2, (df1*x/(df2 + df1*x) ).
     *
     *
     * The arguments a and b are greater than zero, and x
     * x is nonnegative.
     *
     * ACCURACY:
     *
     * Tested at random points (a,b,x) in the indicated intervals.
     *                x     a,b                     Relative error:
     * arithmetic  domain  domain     # trials      peak         rms
     *    IEEE      0,1    1,100       10000       9.3e-18     2.9e-19
     *    IEEE      0,1    1,10000     10000       1.9e-14     2.9e-15
     *    IEEE      1,5    1,10000     10000       5.8e-15     1.4e-16
     *
     * ERROR MESSAGES:
     *
     *   message         condition      value returned
     * fdtrl domain     a<0, b<0, x<0         0.0
     *
     */
    
     
    /*							fdtrcl()
     *
     *	Complemented F distribution
     *
     *
     *
     * SYNOPSIS:
     *
     * int df1, df2;
     * long double x, y, fdtrcl();
     *
     * y = fdtrcl( df1, df2, x );
     *
     *
     *
     * DESCRIPTION:
     *
     * Returns the area from x to infinity under the F density
     * function (also known as Snedcor's density or the
     * variance ratio density).
     *
     *
     *                      inf.
     *                       -
     *              1       | |  a-1      b-1
     * 1-P(x)  =  ------    |   t    (1-t)    dt
     *            B(a,b)  | |
     *                     -
     *                      x
     *
     * (See fdtr.c.)
     *
     * The incomplete beta integral is used, according to the
     * formula
     *
     *	P(x) = incbet( df2/2, df1/2, (df2/(df2 + df1*x) ).
     *
     *
     * ACCURACY:
     *
     * See incbet.c.
     * Tested at random points (a,b,x).
     *
     *                x     a,b                     Relative error:
     * arithmetic  domain  domain     # trials      peak         rms
     *    IEEE      0,1    0,100       10000       4.2e-18     3.3e-19
     *    IEEE      0,1    1,10000     10000       7.2e-15     2.6e-16
     *    IEEE      1,5    1,10000     10000       1.7e-14     3.0e-15
     *
     * ERROR MESSAGES:
     *
     *   message         condition      value returned
     * fdtrcl domain    a<0, b<0, x<0         0.0
     *
     */
    
     
    /*							fdtril()
     *
     *	Inverse of complemented F distribution
     *
     *
     *
     * SYNOPSIS:
     *
     * int df1, df2;
     * long double x, p, fdtril();
     *
     * x = fdtril( df1, df2, p );
     *
     * DESCRIPTION:
     *
     * Finds the F density argument x such that the integral
     * from x to infinity of the F density is equal to the
     * given probability p.
     *
     * This is accomplished using the inverse beta integral
     * function and the relations
     *
     *      z = incbi( df2/2, df1/2, p )
     *      x = df2 (1-z) / (df1 z).
     *
     * Note: the following relations hold for the inverse of
     * the uncomplemented F distribution:
     *
     *      z = incbi( df1/2, df2/2, p )
     *      x = df2 z / (df1 (1-z)).
     *
     * ACCURACY:
     *
     * See incbi.c.
     * Tested at random points (a,b,p).
     *
     *              a,b                     Relative error:
     * arithmetic  domain     # trials      peak         rms
     *  For p between .001 and 1:
     *    IEEE     1,100       40000       4.6e-18     2.7e-19
     *    IEEE     1,10000     30000       1.7e-14     1.4e-16
     *  For p between 10^-6 and .001:
     *    IEEE     1,100       20000       1.9e-15     3.9e-17
     *    IEEE     1,10000     30000       2.7e-15     4.0e-17
     *
     * ERROR MESSAGES:
     *
     *   message         condition      value returned
     * fdtril domain   p <= 0 or p > 1       0.0
     *                     v < 1
     */
    
             
    /*							ceill()
     *							floorl()
     *							frexpl()
     *							ldexpl()
     *							fabsl()
     *							signbitl()
     *							isnanl()
     *							isfinitel()
     *
     *	Floating point numeric utilities
     *
     *
     *
     * SYNOPSIS:
     *
     * long double ceill(), floorl(), frexpl(), ldexpl(), fabsl();
     * int signbitl(), isnanl(), isfinitel();
     * long double x, y;
     * int expnt, n;
     *
     * y = floorl(x);
     * y = ceill(x);
     * y = frexpl( x, &expnt );
     * y = ldexpl( x, n );
     * y = fabsl( x );
     * n = signbitl(x);
     * n = isnanl(x);
     * n = isfinitel(x);
     *
     *
     *
     * DESCRIPTION:
     *
     * The following routines return a long double precision floating point
     * result:
     *
     * floorl() returns the largest integer less than or equal to x.
     * It truncates toward minus infinity.
     *
     * ceill() returns the smallest integer greater than or equal
     * to x.  It truncates toward plus infinity.
     *
     * frexpl() extracts the exponent from x.  It returns an integer
     * power of two to expnt and the significand between 0.5 and 1
     * to y.  Thus  x = y * 2**expn.
     *
     * ldexpl() multiplies x by 2**n.
     *
     * fabsl() returns the absolute value of its argument.
     *
     * These functions are part of the standard C run time library
     * for some but not all C compilers.  The ones supplied are
     * written in C for IEEE arithmetic.  They should
     * be used only if your compiler library does not already have
     * them.
     *
     * The IEEE versions assume that denormal numbers are implemented
     * in the arithmetic.  Some modifications will be required if
     * the arithmetic has abrupt rather than gradual underflow.
     */
    
     
    /*							gammal.c
     *
     *	Gamma function
     *
     *
     *
     * SYNOPSIS:
     *
     * long double x, y, gammal();
     * extern int sgngam;
     *
     * y = gammal( x );
     *
     *
     *
     * DESCRIPTION:
     *
     * Returns gamma function of the argument.  The result is
     * correctly signed, and the sign (+1 or -1) is also
     * returned in a global (extern) variable named sgngam.
     * This variable is also filled in by the logarithmic gamma
     * function lgam().
     *
     * Arguments |x| <= 13 are reduced by recurrence and the function
     * approximated by a rational function of degree 7/8 in the
     * interval (2,3).  Large arguments are handled by Stirling's
     * formula. Large negative arguments are made positive using
     * a reflection formula.  
     *
     *
     * ACCURACY:
     *
     *                      Relative error:
     * arithmetic   domain     # trials      peak         rms
     *    IEEE     -40,+40      10000       3.6e-19     7.9e-20
     *    IEEE    -1755,+1755   10000       4.8e-18     6.5e-19
     *
     * Accuracy for large arguments is dominated by error in powl().
     *
     */
    
     
    /*							lgaml()
     *
     *	Natural logarithm of gamma function
     *
     *
     *
     * SYNOPSIS:
     *
     * long double x, y, lgaml();
     * extern int sgngam;
     *
     * y = lgaml( x );
     *
     *
     *
     * DESCRIPTION:
     *
     * Returns the base e (2.718...) logarithm of the absolute
     * value of the gamma function of the argument.
     * The sign (+1 or -1) of the gamma function is returned in a
     * global (extern) variable named sgngam.
     *
     * For arguments greater than 33, the logarithm of the gamma
     * function is approximated by the logarithmic version of
     * Stirling's formula using a polynomial approximation of
     * degree 4. Arguments between -33 and +33 are reduced by
     * recurrence to the interval [2,3] of a rational approximation.
     * The cosecant reflection formula is employed for arguments
     * less than -33.
     *
     * Arguments greater than MAXLGML (10^4928) return MAXNUML.
     *
     *
     *
     * ACCURACY:
     *
     *
     * arithmetic      domain        # trials     peak         rms
     *    IEEE         -40, 40        100000     2.2e-19     4.6e-20
     *    IEEE    10^-2000,10^+2000    20000     1.6e-19     3.3e-20
     * The error criterion was relative when the function magnitude
     * was greater than one but absolute when it was less than one.
     *
     */
    
     
    /*							gdtrl.c
     *
     *	Gamma distribution function
     *
     *
     *
     * SYNOPSIS:
     *
     * long double a, b, x, y, gdtrl();
     *
     * y = gdtrl( a, b, x );
     *
     *
     *
     * DESCRIPTION:
     *
     * Returns the integral from zero to x of the gamma probability
     * density function:
     *
     *
     *                x
     *        b       -
     *       a       | |   b-1  -at
     * y =  -----    |    t    e    dt
     *       -     | |
     *      | (b)   -
     *               0
     *
     *  The incomplete gamma integral is used, according to the
     * relation
     *
     * y = igam( b, ax ).
     *
     *
     * ACCURACY:
     *
     * See igam().
     *
     * ERROR MESSAGES:
     *
     *   message         condition      value returned
     * gdtrl domain        x < 0            0.0
     *
     */
    
     
    /*							gdtrcl.c
     *
     *	Complemented gamma distribution function
     *
     *
     *
     * SYNOPSIS:
     *
     * long double a, b, x, y, gdtrcl();
     *
     * y = gdtrcl( a, b, x );
     *
     *
     *
     * DESCRIPTION:
     *
     * Returns the integral from x to infinity of the gamma
     * probability density function:
     *
     *
     *               inf.
     *        b       -
     *       a       | |   b-1  -at
     * y =  -----    |    t    e    dt
     *       -     | |
     *      | (b)   -
     *               x
     *
     *  The incomplete gamma integral is used, according to the
     * relation
     *
     * y = igamc( b, ax ).
     *
     *
     * ACCURACY:
     *
     * See igamc().
     *
     * ERROR MESSAGES:
     *
     *   message         condition      value returned
     * gdtrcl domain        x < 0            0.0
     *
     */
    
     
    /*
    C
    C     ..................................................................
    C
    C        SUBROUTINE GELS
    C
    C        PURPOSE
    C           TO SOLVE A SYSTEM OF SIMULTANEOUS LINEAR EQUATIONS WITH
    C           SYMMETRIC COEFFICIENT MATRIX UPPER TRIANGULAR PART OF WHICH
    C           IS ASSUMED TO BE STORED COLUMNWISE.
    C
    C        USAGE
    C           CALL GELS(R,A,M,N,EPS,IER,AUX)
    C
    C        DESCRIPTION OF PARAMETERS
    C           R      - M BY N RIGHT HAND SIDE MATRIX.  (DESTROYED)
    C                    ON RETURN R CONTAINS THE SOLUTION OF THE EQUATIONS.
    C           A      - UPPER TRIANGULAR PART OF THE SYMMETRIC
    C                    M BY M COEFFICIENT MATRIX.  (DESTROYED)
    C           M      - THE NUMBER OF EQUATIONS IN THE SYSTEM.
    C           N      - THE NUMBER OF RIGHT HAND SIDE VECTORS.
    C           EPS    - AN INPUT CONSTANT WHICH IS USED AS RELATIVE
    C                    TOLERANCE FOR TEST ON LOSS OF SIGNIFICANCE.
    C           IER    - RESULTING ERROR PARAMETER CODED AS FOLLOWS
    C                    IER=0  - NO ERROR,
    C                    IER=-1 - NO RESULT BECAUSE OF M LESS THAN 1 OR
    C                             PIVOT ELEMENT AT ANY ELIMINATION STEP
    C                             EQUAL TO 0,
    C                    IER=K  - WARNING DUE TO POSSIBLE LOSS OF SIGNIFI-
    C                             CANCE INDICATED AT ELIMINATION STEP K+1,
    C                             WHERE PIVOT ELEMENT WAS LESS THAN OR
    C                             EQUAL TO THE INTERNAL TOLERANCE EPS TIMES
    C                             ABSOLUTELY GREATEST MAIN DIAGONAL
    C                             ELEMENT OF MATRIX A.
    C           AUX    - AN AUXILIARY STORAGE ARRAY WITH DIMENSION M-1.
    C
    C        REMARKS
    C           UPPER TRIANGULAR PART OF MATRIX A IS ASSUMED TO BE STORED
    C           COLUMNWISE IN M*(M+1)/2 SUCCESSIVE STORAGE LOCATIONS, RIGHT
    C           HAND SIDE MATRIX R COLUMNWISE IN N*M SUCCESSIVE STORAGE
    C           LOCATIONS. ON RETURN SOLUTION MATRIX R IS STORED COLUMNWISE
    C           TOO.
    C           THE PROCEDURE GIVES RESULTS IF THE NUMBER OF EQUATIONS M IS
    C           GREATER THAN 0 AND PIVOT ELEMENTS AT ALL ELIMINATION STEPS
    C           ARE DIFFERENT FROM 0. HOWEVER WARNING IER=K - IF GIVEN -
    C           INDICATES POSSIBLE LOSS OF SIGNIFICANCE. IN CASE OF A WELL
    C           SCALED MATRIX A AND APPROPRIATE TOLERANCE EPS, IER=K MAY BE
    C           INTERPRETED THAT MATRIX A HAS THE RANK K. NO WARNING IS
    C           GIVEN IN CASE M=1.
    C           ERROR PARAMETER IER=-1 DOES NOT NECESSARILY MEAN THAT
    C           MATRIX A IS SINGULAR, AS ONLY MAIN DIAGONAL ELEMENTS
    C           ARE USED AS PIVOT ELEMENTS. POSSIBLY SUBROUTINE GELG (WHICH
    C           WORKS WITH TOTAL PIVOTING) WOULD BE ABLE TO FIND A SOLUTION.
    C
    C        SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED
    C           NONE
    C
    C        METHOD
    C           SOLUTION IS DONE BY MEANS OF GAUSS-ELIMINATION WITH
    C           PIVOTING IN MAIN DIAGONAL, IN ORDER TO PRESERVE
    C           SYMMETRY IN REMAINING COEFFICIENT MATRICES.
    C
    C     ..................................................................
    C
    */
    
     
    /*							hypergl.c
     *
     *	Confluent hypergeometric function
     *
     *
     *
     * SYNOPSIS:
     *
     * long double a, b, x, y, hypergl();
     *
     * y = hypergl( a, b, x );
     *
     *
     *
     * DESCRIPTION:
     *
     * Computes the confluent hypergeometric function
     *
     *                          1           2
     *                       a x    a(a+1) x
     *   F ( a,b;x )  =  1 + ---- + --------- + ...
     *  1 1                  b 1!   b(b+1) 2!
     *
     * Many higher transcendental functions are special cases of
     * this power series.
     *
     * As is evident from the formula, b must not be a negative
     * integer or zero unless a is an integer with 0 >= a > b.
     *
     * The routine attempts both a direct summation of the series
     * and an asymptotic expansion.  In each case error due to
     * roundoff, cancellation, and nonconvergence is estimated.
     * The result with smaller estimated error is returned.
     *
     *
     *
     * ACCURACY:
     *
     * Tested at random points (a, b, x), all three variables
     * ranging from 0 to 30.
     *                      Relative error:
     * arithmetic   domain     # trials      peak         rms
     *    IEEE      0,30        100000      3.3e-18     5.0e-19
     *
     * Larger errors can be observed when b is near a negative
     * integer or zero.  Certain combinations of arguments yield
     * serious cancellation error in the power series summation
     * and also are not in the region of near convergence of the
     * asymptotic series.  An error message is printed if the
     * self-estimated relative error is greater than 1.0e-12.
     *
     */
    
     
    /*							ieee.c
     *
     *    Extended precision IEEE binary floating point arithmetic routines
     *
     * Numbers are stored in C language as arrays of 16-bit unsigned
     * short integers.  The arguments of the routines are pointers to
     * the arrays.
     *
     *
     * External e type data structure, simulates Intel 8087 chip
     * temporary real format but possibly with a larger significand:
     *
     *	NE-1 significand words	(least significant word first,
     *				 most significant bit is normally set)
     *	exponent		(value = EXONE for 1.0,
     *				top bit is the sign)
     *
     *
     * Internal data structure of a number (a "word" is 16 bits):
     *
     * ei[0]	sign word	(0 for positive, 0xffff for negative)
     * ei[1]	biased exponent	(value = EXONE for the number 1.0)
     * ei[2]	high guard word	(always zero after normalization)
     * ei[3]
     * to ei[NI-2]	significand	(NI-4 significand words,
     *				 most significant word first,
     *				 most significant bit is set)
     * ei[NI-1]	low guard word	(0x8000 bit is rounding place)
     *
     *
     *
     *		Routines for external format numbers
     *
     *	asctoe( string, e )	ASCII string to extended double e type
     *	asctoe64( string, &d )	ASCII string to long double
     *	asctoe53( string, &d )	ASCII string to double
     *	asctoe24( string, &f )	ASCII string to single
     *	asctoeg( string, e, prec ) ASCII string to specified precision
     *	e24toe( &f, e )		IEEE single precision to e type
     *	e53toe( &d, e )		IEEE double precision to e type
     *	e64toe( &d, e )		IEEE long double precision to e type
     *	eabs(e)			absolute value
     *	eadd( a, b, c )		c = b + a
     *	eclear(e)		e = 0
     *	ecmp (a, b)		Returns 1 if a > b, 0 if a == b,
     *				-1 if a < b, -2 if either a or b is a NaN.
     *	ediv( a, b, c )		c = b / a
     *	efloor( a, b )		truncate to integer, toward -infinity
     *	efrexp( a, exp, s )	extract exponent and significand
     *	eifrac( e, &l, frac )   e to long integer and e type fraction
     *	euifrac( e, &l, frac )  e to unsigned long integer and e type fraction
     *	einfin( e )		set e to infinity, leaving its sign alone
     *	eldexp( a, n, b )	multiply by 2**n
     *	emov( a, b )		b = a
     *	emul( a, b, c )		c = b * a
     *	eneg(e)			e = -e
     *	eround( a, b )		b = nearest integer value to a
     *	esub( a, b, c )		c = b - a
     *	e24toasc( &f, str, n )	single to ASCII string, n digits after decimal
     *	e53toasc( &d, str, n )	double to ASCII string, n digits after decimal
     *	e64toasc( &d, str, n )	long double to ASCII string
     *	etoasc( e, str, n )	e to ASCII string, n digits after decimal
     *	etoe24( e, &f )		convert e type to IEEE single precision
     *	etoe53( e, &d )		convert e type to IEEE double precision
     *	etoe64( e, &d )		convert e type to IEEE long double precision
     *	ltoe( &l, e )		long (32 bit) integer to e type
     *	ultoe( &l, e )		unsigned long (32 bit) integer to e type
     *      eisneg( e )             1 if sign bit of e != 0, else 0
     *      eisinf( e )             1 if e has maximum exponent (non-IEEE)
     *				or is infinite (IEEE)
     *      eisnan( e )             1 if e is a NaN
     *	esqrt( a, b )		b = square root of a
     *
     *
     *		Routines for internal format numbers
     *
     *	eaddm( ai, bi )		add significands, bi = bi + ai
     *	ecleaz(ei)		ei = 0
     *	ecleazs(ei)		set ei = 0 but leave its sign alone
     *	ecmpm( ai, bi )		compare significands, return 1, 0, or -1
     *	edivm( ai, bi )		divide  significands, bi = bi / ai
     *	emdnorm(ai,l,s,exp)	normalize and round off
     *	emovi( a, ai )		convert external a to internal ai
     *	emovo( ai, a )		convert internal ai to external a
     *	emovz( ai, bi )		bi = ai, low guard word of bi = 0
     *	emulm( ai, bi )		multiply significands, bi = bi * ai
     *	enormlz(ei)		left-justify the significand
     *	eshdn1( ai )		shift significand and guards down 1 bit
     *	eshdn8( ai )		shift down 8 bits
     *	eshdn6( ai )		shift down 16 bits
     *	eshift( ai, n )		shift ai n bits up (or down if n < 0)
     *	eshup1( ai )		shift significand and guards up 1 bit
     *	eshup8( ai )		shift up 8 bits
     *	eshup6( ai )		shift up 16 bits
     *	esubm( ai, bi )		subtract significands, bi = bi - ai
     *
     *
     * The result is always normalized and rounded to NI-4 word precision
     * after each arithmetic operation.
     *
     * Exception flags are NOT fully supported.
     *
     * Define INFINITY in mconf.h for support of infinity; otherwise a
     * saturation arithmetic is implemented.
     *
     * Define NANS for support of Not-a-Number items; otherwise the
     * arithmetic will never produce a NaN output, and might be confused
     * by a NaN input.
     * If NaN's are supported, the output of ecmp(a,b) is -2 if
     * either a or b is a NaN. This means asking if(ecmp(a,b) < 0)
     * may not be legitimate. Use if(ecmp(a,b) == -1) for less-than
     * if in doubt.
     * Signaling NaN's are NOT supported; they are treated the same
     * as quiet NaN's.
     *
     * Denormals are always supported here where appropriate (e.g., not
     * for conversion to DEC numbers).
     */
    
    /*
     * Revision history:
     *
     *  5 Jan 84	PDP-11 assembly language version
     *  2 Mar 86	fixed bug in asctoq()
     *  6 Dec 86	C language version
     * 30 Aug 88	100 digit version, improved rounding
     * 15 May 92    80-bit long double support
     *
     * Author:  S. L. Moshier.
     */
    
     
    /*							igamil()
     *
     *      Inverse of complemented imcomplete gamma integral
     *
     *
     *
     * SYNOPSIS:
     *
     * long double a, x, y, igamil();
     *
     * x = igamil( a, y );
     *
     *
     *
     * DESCRIPTION:
     *
     * Given y, the function finds x such that
     *
     *  igamc( a, x ) = y.
     *
     * It is valid in the right-hand tail of the distribution, y < 0.5.
     * Starting with the approximate value
     *
     *         3
     *  x = a t
     *
     *  where
     *
     *  t = 1 - d - ndtri(y) sqrt(d)
     * 
     * and
     *
     *  d = 1/9a,
     *
     * the routine performs up to 10 Newton iterations to find the
     * root of igamc(a,x) - y = 0.
     *
     *
     * ACCURACY:
     *
     * Tested for a ranging from 0.5 to 30 and x from 0 to 0.5.
     *
     *                      Relative error:
     * arithmetic   domain     # trials      peak         rms
     *    DEC       0,0.5         3400       8.8e-16     1.3e-16
     *    IEEE      0,0.5        10000       1.1e-14     1.0e-15
     *
     */
    
     
    /*							igaml.c
     *
     *	Incomplete gamma integral
     *
     *
     *
     * SYNOPSIS:
     *
     * long double a, x, y, igaml();
     *
     * y = igaml( a, x );
     *
     *
     *
     * DESCRIPTION:
     *
     * The function is defined by
     *
     *                           x
     *                            -
     *                   1       | |  -t  a-1
     *  igam(a,x)  =   -----     |   e   t   dt.
     *                  -      | |
     *                 | (a)    -
     *                           0
     *
     *
     * In this implementation both arguments must be positive.
     * The integral is evaluated by either a power series or
     * continued fraction expansion, depending on the relative
     * values of a and x.
     *
     *
     *
     * ACCURACY:
     *
     *                      Relative error:
     * arithmetic   domain     # trials      peak         rms
     *    DEC       0,30         4000       4.4e-15     6.3e-16
     *    IEEE      0,30        10000       3.6e-14     5.1e-15
     *
     */
    
     
    /*							igamcl()
     *
     *	Complemented incomplete gamma integral
     *
     *
     *
     * SYNOPSIS:
     *
     * long double a, x, y, igamcl();
     *
     * y = igamcl( a, x );
     *
     *
     *
     * DESCRIPTION:
     *
     * The function is defined by
     *
     *
     *  igamc(a,x)   =   1 - igam(a,x)
     *
     *                            inf.
     *                              -
     *                     1       | |  -t  a-1
     *               =   -----     |   e   t   dt.
     *                    -      | |
     *                   | (a)    -
     *                             x
     *
     *
     * In this implementation both arguments must be positive.
     * The integral is evaluated by either a power series or
     * continued fraction expansion, depending on the relative
     * values of a and x.
     *
     *
     *
     * ACCURACY:
     *
     *                      Relative error:
     * arithmetic   domain     # trials      peak         rms
     *    DEC       0,30         2000       2.7e-15     4.0e-16
     *    IEEE      0,30        60000       1.4e-12     6.3e-15
     *
     */
    
     
    /*							incbetl.c
     *
     *	Incomplete beta integral
     *
     *
     * SYNOPSIS:
     *
     * long double a, b, x, y, incbetl();
     *
     * y = incbetl( a, b, x );
     *
     *
     * DESCRIPTION:
     *
     * Returns incomplete beta integral of the arguments, evaluated
     * from zero to x.  The function is defined as
     *
     *                  x
     *     -            -
     *    | (a+b)      | |  a-1     b-1
     *  -----------    |   t   (1-t)   dt.
     *   -     -     | |
     *  | (a) | (b)   -
     *                 0
     *
     * The domain of definition is 0 <= x <= 1.  In this
     * implementation a and b are restricted to positive values.
     * The integral from x to 1 may be obtained by the symmetry
     * relation
     *
     *    1 - incbet( a, b, x )  =  incbet( b, a, 1-x ).
     *
     * The integral is evaluated by a continued fraction expansion
     * or, when b*x is small, by a power series.
     *
     * ACCURACY:
     *
     * Tested at random points (a,b,x) with x between 0 and 1.
     * arithmetic   domain     # trials      peak         rms
     *    IEEE       0,5       20000        4.5e-18     2.4e-19
     *    IEEE       0,100    100000        3.9e-17     1.0e-17
     * Half-integer a, b:
     *    IEEE      .5,10000  100000        3.9e-14     4.4e-15
     * Outputs smaller than the IEEE gradual underflow threshold
     * were excluded from these statistics.
     *
     * ERROR MESSAGES:
     *
     *   message         condition      value returned
     * incbetl domain     x<0, x>1          0.0
     */
    
     
    /*							incbil()
     *
     *      Inverse of imcomplete beta integral
     *
     *
     *
     * SYNOPSIS:
     *
     * long double a, b, x, y, incbil();
     *
     * x = incbil( a, b, y );
     *
     *
     *
     * DESCRIPTION:
     *
     * Given y, the function finds x such that
     *
     *  incbet( a, b, x ) = y.
     *
     * the routine performs up to 10 Newton iterations to find the
     * root of incbet(a,b,x) - y = 0.
     *
     *
     * ACCURACY:
     *
     *                      Relative error:
     *                x       a,b
     * arithmetic   domain   domain   # trials    peak       rms
     *    IEEE      0,1    .5,10000    10000    1.1e-14   1.4e-16
     */
    
         
    /*							isnanl()
     *							isfinitel()
     *							signbitl()
     *
     *	Floating point IEEE special number tests
     *
     *
     *
     * SYNOPSIS:
     *
     * int signbitl(), isnanl(), isfinitel();
     * long double x, y;
     *
     * n = signbitl(x);
     * n = isnanl(x);
     * n = isfinitel(x);
     *
     *
     *
     * DESCRIPTION:
     *
     * These functions are part of the standard C run time library
     * for some but not all C compilers.  The ones supplied are
     * written in C for IEEE arithmetic.  They should
     * be used only if your compiler library does not already have
     * them.
     *
     */
    
     
    /*							j0l.c
     *
     *	Bessel function of order zero
     *
     *
     *
     * SYNOPSIS:
     *
     * long double x, y, j0l();
     *
     * y = j0l( x );
     *
     *
     *
     * DESCRIPTION:
     *
     * Returns Bessel function of first kind, order zero of the argument.
     *
     * The domain is divided into the intervals [0, 9] and
     * (9, infinity). In the first interval the rational approximation
     * is (x^2 - r^2) (x^2 - s^2) (x^2 - t^2) P7(x^2) / Q8(x^2),
     * where r, s, t are the first three zeros of the function.
     * In the second interval the expansion is in terms of the
     * modulus M0(x) = sqrt(J0(x)^2 + Y0(x)^2) and phase  P0(x)
     * = atan(Y0(x)/J0(x)).  M0 is approximated by sqrt(1/x)P7(1/x)/Q7(1/x).
     * The approximation to J0 is M0 * cos(x -  pi/4 + 1/x P5(1/x^2)/Q6(1/x^2)).
     *
     *
     * ACCURACY:
     *
     *                      Absolute error:
     * arithmetic   domain      # trials      peak         rms
     *    IEEE      0, 30       100000      2.8e-19      7.4e-20
     *
     *
     */
    
     
    /*							y0l.c
     *
     *	Bessel function of the second kind, order zero
     *
     *
     *
     * SYNOPSIS:
     *
     * double x, y, y0l();
     *
     * y = y0l( x );
     *
     *
     *
     * DESCRIPTION:
     *
     * Returns Bessel function of the second kind, of order
     * zero, of the argument.
     *
     * The domain is divided into the intervals [0, 5>, [5,9> and
     * [9, infinity). In the first interval a rational approximation
     * R(x) is employed to compute y0(x)  = R(x) + 2/pi * log(x) * j0(x).
     *
     * In the second interval, the approximation is
     *     (x - p)(x - q)(x - r)(x - s)P7(x)/Q7(x)
     * where p, q, r, s are zeros of y0(x).
     *
     * The third interval uses the same approximations to modulus
     * and phase as j0(x), whence y0(x) = modulus * sin(phase).
     *
     * ACCURACY:
     *
     *  Absolute error, when y0(x) < 1; else relative error:
     *
     * arithmetic   domain     # trials      peak         rms
     *    IEEE      0, 30       100000      3.4e-19     7.6e-20
     *
     */
    
     
    /*							j1l.c
     *
     *	Bessel function of order one
     *
     *
     *
     * SYNOPSIS:
     *
     * long double x, y, j1l();
     *
     * y = j1l( x );
     *
     *
     *
     * DESCRIPTION:
     *
     * Returns Bessel function of order one of the argument.
     *
     * The domain is divided into the intervals [0, 9] and
     * (9, infinity). In the first interval the rational approximation
     * is (x^2 - r^2) (x^2 - s^2) (x^2 - t^2) x P8(x^2) / Q8(x^2),
     * where r, s, t are the first three zeros of the function.
     * In the second interval the expansion is in terms of the
     * modulus M1(x) = sqrt(J1(x)^2 + Y1(x)^2) and phase  P1(x)
     * = atan(Y1(x)/J1(x)).  M1 is approximated by sqrt(1/x)P7(1/x)/Q8(1/x).
     * The approximation to j1 is M1 * cos(x -  3 pi/4 + 1/x P5(1/x^2)/Q6(1/x^2)).
     *
     *
     * ACCURACY:
     *
     *                      Absolute error:
     * arithmetic   domain      # trials      peak         rms
     *    IEEE      0, 30        40000      1.8e-19      5.0e-20
     *
     *
     */
    
     
    /*							y1l.c
     *
     *	Bessel function of the second kind, order zero
     *
     *
     *
     * SYNOPSIS:
     *
     * double x, y, y1l();
     *
     * y = y1l( x );
     *
     *
     *
     * DESCRIPTION:
     *
     * Returns Bessel function of the second kind, of order
     * zero, of the argument.
     *
     * The domain is divided into the intervals [0, 4.5>, [4.5,9> and
     * [9, infinity). In the first interval a rational approximation
     * R(x) is employed to compute y0(x)  = R(x) + 2/pi * log(x) * j0(x).
     *
     * In the second interval, the approximation is
     *     (x - p)(x - q)(x - r)(x - s)P9(x)/Q10(x)
     * where p, q, r, s are zeros of y1(x).
     *
     * The third interval uses the same approximations to modulus
     * and phase as j1(x), whence y1(x) = modulus * sin(phase).
     *
     * ACCURACY:
     *
     *  Absolute error, when y0(x) < 1; else relative error:
     *
     * arithmetic   domain     # trials      peak         rms
     *    IEEE      0, 30       36000       2.7e-19     5.3e-20
     *
     */
    
     
    /*							jnl.c
     *
     *	Bessel function of integer order
     *
     *
     *
     * SYNOPSIS:
     *
     * int n;
     * long double x, y, jnl();
     *
     * y = jnl( n, x );
     *
     *
     *
     * DESCRIPTION:
     *
     * Returns Bessel function of order n, where n is a
     * (possibly negative) integer.
     *
     * The ratio of jn(x) to j0(x) is computed by backward
     * recurrence.  First the ratio jn/jn-1 is found by a
     * continued fraction expansion.  Then the recurrence
     * relating successive orders is applied until j0 or j1 is
     * reached.
     *
     * If n = 0 or 1 the routine for j0 or j1 is called
     * directly.
     *
     *
     *
     * ACCURACY:
     *
     *                      Absolute error:
     * arithmetic   domain      # trials      peak         rms
     *    IEEE     -30, 30        5000       3.3e-19     4.7e-20
     *
     *
     * Not suitable for large n or x.
     *
     */
    
     
    /*							ldrand.c
     *
     *	Pseudorandom number generator
     *
     *
     *
     * SYNOPSIS:
     *
     * double y;
     * int ldrand();
     *
     * ldrand( &y );
     *
     *
     *
     * DESCRIPTION:
     *
     * Yields a random number 1.0 < = y < 2.0.
     *
     * The three-generator congruential algorithm by Brian
     * Wichmann and David Hill (BYTE magazine, March, 1987,
     * pp 127-8) is used.
     *
     * Versions invoked by the different arithmetic compile
     * time options IBMPC, and MIEEE, produce the same sequences.
     *
     */
    
     
    /*							log10l.c
     *
     *	Common logarithm, long double precision
     *
     *
     *
     * SYNOPSIS:
     *
     * long double x, y, log10l();
     *
     * y = log10l( x );
     *
     *
     *
     * DESCRIPTION:
     *
     * Returns the base 10 logarithm of x.
     *
     * The argument is separated into its exponent and fractional
     * parts.  If the exponent is between -1 and +1, the logarithm
     * of the fraction is approximated by
     *
     *     log(1+x) = x - 0.5 x**2 + x**3 P(x)/Q(x).
     *
     * Otherwise, setting  z = 2(x-1)/x+1),
     * 
     *     log(x) = z + z**3 P(z)/Q(z).
     *
     *
     *
     * ACCURACY:
     *
     *                      Relative error:
     * arithmetic   domain     # trials      peak         rms
     *    IEEE      0.5, 2.0     30000      9.0e-20     2.6e-20
     *    IEEE     exp(+-10000)  30000      6.0e-20     2.3e-20
     *
     * In the tests over the interval exp(+-10000), the logarithms
     * of the random arguments were uniformly distributed over
     * [-10000, +10000].
     *
     * ERROR MESSAGES:
     *
     * log singularity:  x = 0; returns MINLOG
     * log domain:       x < 0; returns MINLOG
     */
    
     
    /*							log1pl.c
     *
     *      Relative error logarithm
     *	Natural logarithm of 1+x, long double precision
     *
     *
     *
     * SYNOPSIS:
     *
     * long double x, y, log1pl();
     *
     * y = log1pl( x );
     *
     *
     *
     * DESCRIPTION:
     *
     * Returns the base e (2.718...) logarithm of 1+x.
     *
     * The argument 1+x is separated into its exponent and fractional
     * parts.  If the exponent is between -1 and +1, the logarithm
     * of the fraction is approximated by
     *
     *     log(1+x) = x - 0.5 x^2 + x^3 P(x)/Q(x).
     *
     * Otherwise, setting  z = 2(x-1)/x+1),
     * 
     *     log(x) = z + z^3 P(z)/Q(z).
     *
     *
     *
     * ACCURACY:
     *
     *                      Relative error:
     * arithmetic   domain     # trials      peak         rms
     *    IEEE     -1.0, 9.0    100000      8.2e-20    2.5e-20
     *
     * ERROR MESSAGES:
     *
     * log singularity:  x-1 = 0; returns -INFINITYL
     * log domain:       x-1 < 0; returns NANL
     */
    
     
    /*							log2l.c
     *
     *	Base 2 logarithm, long double precision
     *
     *
     *
     * SYNOPSIS:
     *
     * long double x, y, log2l();
     *
     * y = log2l( x );
     *
     *
     *
     * DESCRIPTION:
     *
     * Returns the base 2 logarithm of x.
     *
     * The argument is separated into its exponent and fractional
     * parts.  If the exponent is between -1 and +1, the (natural)
     * logarithm of the fraction is approximated by
     *
     *     log(1+x) = x - 0.5 x**2 + x**3 P(x)/Q(x).
     *
     * Otherwise, setting  z = 2(x-1)/x+1),
     * 
     *     log(x) = z + z**3 P(z)/Q(z).
     *
     *
     *
     * ACCURACY:
     *
     *                      Relative error:
     * arithmetic   domain     # trials      peak         rms
     *    IEEE      0.5, 2.0     30000      9.8e-20     2.7e-20
     *    IEEE     exp(+-10000)  70000      5.4e-20     2.3e-20
     *
     * In the tests over the interval exp(+-10000), the logarithms
     * of the random arguments were uniformly distributed over
     * [-10000, +10000].
     *
     * ERROR MESSAGES:
     *
     * log singularity:  x = 0; returns -INFINITYL
     * log domain:       x < 0; returns NANL
     */
    
     
    /*							logl.c
     *
     *	Natural logarithm, long double precision
     *
     *
     *
     * SYNOPSIS:
     *
     * long double x, y, logl();
     *
     * y = logl( x );
     *
     *
     *
     * DESCRIPTION:
     *
     * Returns the base e (2.718...) logarithm of x.
     *
     * The argument is separated into its exponent and fractional
     * parts.  If the exponent is between -1 and +1, the logarithm
     * of the fraction is approximated by
     *
     *     log(1+x) = x - 0.5 x**2 + x**3 P(x)/Q(x).
     *
     * Otherwise, setting  z = 2(x-1)/x+1),
     * 
     *     log(x) = z + z**3 P(z)/Q(z).
     *
     *
     *
     * ACCURACY:
     *
     *                      Relative error:
     * arithmetic   domain     # trials      peak         rms
     *    IEEE      0.5, 2.0    150000      8.71e-20    2.75e-20
     *    IEEE     exp(+-10000) 100000      5.39e-20    2.34e-20
     *
     * In the tests over the interval exp(+-10000), the logarithms
     * of the random arguments were uniformly distributed over
     * [-10000, +10000].
     *
     * ERROR MESSAGES:
     *
     * log singularity:  x = 0; returns -INFINITYL
     * log domain:       x < 0; returns NANL
     */
    
     
    /*							mtherr.c
     *
     *	Library common error handling routine
     *
     *
     *
     * SYNOPSIS:
     *
     * char *fctnam;
     * int code;
     * int mtherr();
     *
     * mtherr( fctnam, code );
     *
     *
     *
     * DESCRIPTION:
     *
     * This routine may be called to report one of the following
     * error conditions (in the include file mconf.h).
     *  
     *   Mnemonic        Value          Significance
     *
     *    DOMAIN            1       argument domain error
     *    SING              2       function singularity
     *    OVERFLOW          3       overflow range error
     *    UNDERFLOW         4       underflow range error
     *    TLOSS             5       total loss of precision
     *    PLOSS             6       partial loss of precision
     *    EDOM             33       Unix domain error code
     *    ERANGE           34       Unix range error code
     *
     * The default version of the file prints the function name,
     * passed to it by the pointer fctnam, followed by the
     * error condition.  The display is directed to the standard
     * output device.  The routine then returns to the calling
     * program.  Users may wish to modify the program to abort by
     * calling exit() under severe error conditions such as domain
     * errors.
     *
     * Since all error conditions pass control to this function,
     * the display may be easily changed, eliminated, or directed
     * to an error logging device.
     *
     * SEE ALSO:
     *
     * mconf.h
     *
     */
    
     
    /*							nbdtrl.c
     *
     *	Negative binomial distribution
     *
     *
     *
     * SYNOPSIS:
     *
     * int k, n;
     * long double p, y, nbdtrl();
     *
     * y = nbdtrl( k, n, p );
     *
     *
     *
     * DESCRIPTION:
     *
     * Returns the sum of the terms 0 through k of the negative
     * binomial distribution:
     *
     *   k
     *   --  ( n+j-1 )   n      j
     *   >   (       )  p  (1-p)
     *   --  (   j   )
     *  j=0
     *
     * In a sequence of Bernoulli trials, this is the probability
     * that k or fewer failures precede the nth success.
     *
     * The terms are not computed individually; instead the incomplete
     * beta integral is employed, according to the formula
     *
     * y = nbdtr( k, n, p ) = incbet( n, k+1, p ).
     *
     * The arguments must be positive, with p ranging from 0 to 1.
     *
     *
     *
     * ACCURACY:
     *
     * Tested at random points (k,n,p) with k and n between 1 and 10,000
     * and p between 0 and 1.
     *
     * arithmetic   domain     # trials      peak         rms
     *    Absolute error:
     *    IEEE      0,10000     10000       9.8e-15     2.1e-16
     *
     */
    
     
    /*							nbdtrcl.c
     *
     *	Complemented negative binomial distribution
     *
     *
     *
     * SYNOPSIS:
     *
     * int k, n;
     * long double p, y, nbdtrcl();
     *
     * y = nbdtrcl( k, n, p );
     *
     *
     *
     * DESCRIPTION:
     *
     * Returns the sum of the terms k+1 to infinity of the negative
     * binomial distribution:
     *
     *   inf
     *   --  ( n+j-1 )   n      j
     *   >   (       )  p  (1-p)
     *   --  (   j   )
     *  j=k+1
     *
     * The terms are not computed individually; instead the incomplete
     * beta integral is employed, according to the formula
     *
     * y = nbdtrc( k, n, p ) = incbet( k+1, n, 1-p ).
     *
     * The arguments must be positive, with p ranging from 0 to 1.
     *
     *
     *
     * ACCURACY:
     *
     * See incbetl.c.
     *
     */
    
     
    /*							nbdtril
     *
     *	Functional inverse of negative binomial distribution
     *
     *
     *
     * SYNOPSIS:
     *
     * int k, n;
     * long double p, y, nbdtril();
     *
     * p = nbdtril( k, n, y );
     *
     *
     *
     * DESCRIPTION:
     *
     * Finds the argument p such that nbdtr(k,n,p) is equal to y.
     *
     * ACCURACY:
     *
     * Tested at random points (a,b,y), with y between 0 and 1.
     *
     *               a,b                     Relative error:
     * arithmetic  domain     # trials      peak         rms
     *    IEEE     0,100
     * See also incbil.c.
     */
    
     
    /*							ndtril.c
     *
     *	Inverse of Normal distribution function
     *
     *
     *
     * SYNOPSIS:
     *
     * long double x, y, ndtril();
     *
     * x = ndtril( y );
     *
     *
     *
     * DESCRIPTION:
     *
     * Returns the argument, x, for which the area under the
     * Gaussian probability density function (integrated from
     * minus infinity to x) is equal to y.
     *
     *
     * For small arguments 0 < y < exp(-2), the program computes
     * z = sqrt( -2 log(y) );  then the approximation is
     * x = z - log(z)/z  - (1/z) P(1/z) / Q(1/z) .
     * For larger arguments,  x/sqrt(2 pi) = w + w^3 R(w^2)/S(w^2)) ,
     * where w = y - 0.5 .
     *
     * ACCURACY:
     *
     *                      Relative error:
     * arithmetic   domain        # trials      peak         rms
     *  Arguments uniformly distributed:
     *    IEEE       0, 1           5000       7.8e-19     9.9e-20
     *  Arguments exponentially distributed:
     *    IEEE     exp(-11355),-1  30000       1.7e-19     4.3e-20
     *
     *
     * ERROR MESSAGES:
     *
     *   message         condition    value returned
     * ndtril domain      x <= 0        -MAXNUML
     * ndtril domain      x >= 1         MAXNUML
     *
     */
    
     
    /*							ndtrl.c
     *
     *	Normal distribution function
     *
     *
     *
     * SYNOPSIS:
     *
     * long double x, y, ndtrl();
     *
     * y = ndtrl( x );
     *
     *
     *
     * DESCRIPTION:
     *
     * Returns the area under the Gaussian probability density
     * function, integrated from minus infinity to x:
     *
     *                            x
     *                             -
     *                   1        | |          2
     *    ndtr(x)  = ---------    |    exp( - t /2 ) dt
     *               sqrt(2pi)  | |
     *                           -
     *                          -inf.
     *
     *             =  ( 1 + erf(z) ) / 2
     *             =  erfc(z) / 2
     *
     * where z = x/sqrt(2). Computation is via the functions
     * erf and erfc with care to avoid error amplification in computing exp(-x^2).
     *
     *
     * ACCURACY:
     *
     *                      Relative error:
     * arithmetic   domain     # trials      peak         rms
     *    IEEE     -13,0        30000       7.7e-19     1.0e-19
     *    IEEE     -106.5,-2    30000       4.2e-19     7.2e-20
     *    IEEE       0,3        30000       1.0e-19     2.4e-20
     *
     *
     * ERROR MESSAGES:
     *
     *   message         condition           value returned
     * erfcl underflow    x^2 / 2 > MAXLOGL        0.0
     *
     */
    
     
    /*							erfl.c
     *
     *	Error function
     *
     *
     *
     * SYNOPSIS:
     *
     * long double x, y, erfl();
     *
     * y = erfl( x );
     *
     *
     *
     * DESCRIPTION:
     *
     * The integral is
     *
     *                           x 
     *                            -
     *                 2         | |          2
     *   erf(x)  =  --------     |    exp( - t  ) dt.
     *              sqrt(pi)   | |
     *                          -
     *                           0
     *
     * The magnitude of x is limited to about 106.56 for IEEE
     * arithmetic; 1 or -1 is returned outside this range.
     *
     * For 0 <= |x| < 1, erf(x) = x * P6(x^2)/Q6(x^2); otherwise
     * erf(x) = 1 - erfc(x).
     *
     *
     *
     * ACCURACY:
     *
     *                      Relative error:
     * arithmetic   domain     # trials      peak         rms
     *    IEEE      0,1         50000       2.0e-19     5.7e-20
     *
     */
    
     
    /*							erfcl.c
     *
     *	Complementary error function
     *
     *
     *
     * SYNOPSIS:
     *
     * long double x, y, erfcl();
     *
     * y = erfcl( x );
     *
     *
     *
     * DESCRIPTION:
     *
     *
     *  1 - erf(x) =
     *
     *                           inf. 
     *                             -
     *                  2         | |          2
     *   erfc(x)  =  --------     |    exp( - t  ) dt
     *               sqrt(pi)   | |
     *                           -
     *                            x
     *
     *
     * For small x, erfc(x) = 1 - erf(x); otherwise rational
     * approximations are computed.
     *
     * A special function expx2l.c is used to suppress error amplification
     * in computing exp(-x^2).
     *
     *
     * ACCURACY:
     *
     *                      Relative error:
     * arithmetic   domain     # trials      peak         rms
     *    IEEE      0,13        50000      8.4e-19      9.7e-20
     *    IEEE      6,106.56    20000      2.9e-19      7.1e-20
     *
     *
     * ERROR MESSAGES:
     *
     *   message          condition              value returned
     * erfcl underflow    x^2 > MAXLOGL              0.0
     *
     *
     */
    
     
    /*							pdtrl.c
     *
     *	Poisson distribution
     *
     *
     *
     * SYNOPSIS:
     *
     * int k;
     * long double m, y, pdtrl();
     *
     * y = pdtrl( k, m );
     *
     *
     *
     * DESCRIPTION:
     *
     * Returns the sum of the first k terms of the Poisson
     * distribution:
     *
     *   k         j
     *   --   -m  m
     *   >   e    --
     *   --       j!
     *  j=0
     *
     * The terms are not summed directly; instead the incomplete
     * gamma integral is employed, according to the relation
     *
     * y = pdtr( k, m ) = igamc( k+1, m ).
     *
     * The arguments must both be positive.
     *
     *
     *
     * ACCURACY:
     *
     * See igamc().
     *
     */
    
     
    /*							pdtrcl()
     *
     *	Complemented poisson distribution
     *
     *
     *
     * SYNOPSIS:
     *
     * int k;
     * long double m, y, pdtrcl();
     *
     * y = pdtrcl( k, m );
     *
     *
     *
     * DESCRIPTION:
     *
     * Returns the sum of the terms k+1 to infinity of the Poisson
     * distribution:
     *
     *  inf.       j
     *   --   -m  m
     *   >   e    --
     *   --       j!
     *  j=k+1
     *
     * The terms are not summed directly; instead the incomplete
     * gamma integral is employed, according to the formula
     *
     * y = pdtrc( k, m ) = igam( k+1, m ).
     *
     * The arguments must both be positive.
     *
     *
     *
     * ACCURACY:
     *
     * See igam.c.
     *
     */
    
     
    /*							pdtril()
     *
     *	Inverse Poisson distribution
     *
     *
     *
     * SYNOPSIS:
     *
     * int k;
     * long double m, y, pdtrl();
     *
     * m = pdtril( k, y );
     *
     *
     *
     *
     * DESCRIPTION:
     *
     * Finds the Poisson variable x such that the integral
     * from 0 to x of the Poisson density is equal to the
     * given probability y.
     *
     * This is accomplished using the inverse gamma integral
     * function and the relation
     *
     *    m = igami( k+1, y ).
     *
     *
     *
     *
     * ACCURACY:
     *
     * See igami.c.
     *
     * ERROR MESSAGES:
     *
     *   message         condition      value returned
     * pdtri domain    y < 0 or y >= 1       0.0
     *                     k < 0
     *
     */
    
       
    /*							polevll.c
     *							p1evll.c
     *
     *	Evaluate polynomial
     *
     *
     *
     * SYNOPSIS:
     *
     * int N;
     * long double x, y, coef[N+1], polevl[];
     *
     * y = polevll( x, coef, N );
     *
     *
     *
     * DESCRIPTION:
     *
     * Evaluates polynomial of degree N:
     *
     *                     2          N
     * y  =  C  + C x + C x  +...+ C x
     *        0    1     2          N
     *
     * Coefficients are stored in reverse order:
     *
     * coef[0] = C  , ..., coef[N] = C  .
     *            N                   0
     *
     *  The function p1evll() assumes that coef[N] = 1.0 and is
     * omitted from the array.  Its calling arguments are
     * otherwise the same as polevll().
     *
     *  This module also contains the following globally declared constants:
     * MAXNUML = 1.189731495357231765021263853E4932L;
     * MACHEPL = 5.42101086242752217003726400434970855712890625E-20L;
     * MAXLOGL =  1.1356523406294143949492E4L;
     * MINLOGL = -1.1355137111933024058873E4L;
     * LOGE2L  = 6.9314718055994530941723E-1L;
     * LOG2EL  = 1.4426950408889634073599E0L;
     * PIL     = 3.1415926535897932384626L;
     * PIO2L   = 1.5707963267948966192313L;
     * PIO4L   = 7.8539816339744830961566E-1L;
     *
     * SPEED:
     *
     * In the interest of speed, there are no checks for out
     * of bounds arithmetic.  This routine is used by most of
     * the functions in the library.  Depending on available
     * equipment features, the user may wish to rewrite the
     * program in microcode or assembly language.
     *
     */
    
     
    /*							powil.c
     *
     *	Real raised to integer power, long double precision
     *
     *
     *
     * SYNOPSIS:
     *
     * long double x, y, powil();
     * int n;
     *
     * y = powil( x, n );
     *
     *
     *
     * DESCRIPTION:
     *
     * Returns argument x raised to the nth power.
     * The routine efficiently decomposes n as a sum of powers of
     * two. The desired power is a product of two-to-the-kth
     * powers of x.  Thus to compute the 32767 power of x requires
     * 28 multiplications instead of 32767 multiplications.
     *
     *
     *
     * ACCURACY:
     *
     *
     *                      Relative error:
     * arithmetic   x domain   n domain  # trials      peak         rms
     *    IEEE     .001,1000  -1022,1023  50000       4.3e-17     7.8e-18
     *    IEEE        1,2     -1022,1023  20000       3.9e-17     7.6e-18
     *    IEEE     .99,1.01     0,8700    10000       3.6e-16     7.2e-17
     *
     * Returns MAXNUM on overflow, zero on underflow.
     *
     */
    
     
    /*							powl.c
     *
     *	Power function, long double precision
     *
     *
     *
     * SYNOPSIS:
     *
     * long double x, y, z, powl();
     *
     * z = powl( x, y );
     *
     *
     *
     * DESCRIPTION:
     *
     * Computes x raised to the yth power.  Analytically,
     *
     *      x**y  =  exp( y log(x) ).
     *
     * Following Cody and Waite, this program uses a lookup table
     * of 2**-i/32 and pseudo extended precision arithmetic to
     * obtain several extra bits of accuracy in both the logarithm
     * and the exponential.
     *
     *
     *
     * ACCURACY:
     *
     * The relative error of pow(x,y) can be estimated
     * by   y dl ln(2),   where dl is the absolute error of
     * the internally computed base 2 logarithm.  At the ends
     * of the approximation interval the logarithm equal 1/32
     * and its relative error is about 1 lsb = 1.1e-19.  Hence
     * the predicted relative error in the result is 2.3e-21 y .
     *
     *                      Relative error:
     * arithmetic   domain     # trials      peak         rms
     *
     *    IEEE     +-1000       40000      2.8e-18      3.7e-19
     * .001 < x < 1000, with log(x) uniformly distributed.
     * -1000 < y < 1000, y uniformly distributed.
     *
     *    IEEE     0,8700       60000      6.5e-18      1.0e-18
     * 0.99 < x < 1.01, 0 < y < 8700, uniformly distributed.
     *
     *
     * ERROR MESSAGES:
     *
     *   message         condition      value returned
     * pow overflow     x**y > MAXNUM      INFINITY
     * pow underflow   x**y < 1/MAXNUM       0.0
     * pow domain      x<0 and y noninteger  0.0
     *
     */
    
     
    /*							sinhl.c
     *
     *	Hyperbolic sine, long double precision
     *
     *
     *
     * SYNOPSIS:
     *
     * long double x, y, sinhl();
     *
     * y = sinhl( x );
     *
     *
     *
     * DESCRIPTION:
     *
     * Returns hyperbolic sine of argument in the range MINLOGL to
     * MAXLOGL.
     *
     * The range is partitioned into two segments.  If |x| <= 1, a
     * rational function of the form x + x**3 P(x)/Q(x) is employed.
     * Otherwise the calculation is sinh(x) = ( exp(x) - exp(-x) )/2.
     *
     *
     *
     * ACCURACY:
     *
     *                      Relative error:
     * arithmetic   domain     # trials      peak         rms
     *    IEEE       -2,2       10000       1.5e-19     3.9e-20
     *    IEEE     +-10000      30000       1.1e-19     2.8e-20
     *
     */
    
     
    /*							sinl.c
     *
     *	Circular sine, long double precision
     *
     *
     *
     * SYNOPSIS:
     *
     * long double x, y, sinl();
     *
     * y = sinl( x );
     *
     *
     *
     * DESCRIPTION:
     *
     * Range reduction is into intervals of pi/4.  The reduction
     * error is nearly eliminated by contriving an extended precision
     * modular arithmetic.
     *
     * Two polynomial approximating functions are employed.
     * Between 0 and pi/4 the sine is approximated by the Cody
     * and Waite polynomial form
     *      x + x**3 P(x**2) .
     * Between pi/4 and pi/2 the cosine is represented as
     *      1 - .5 x**2 + x**4 Q(x**2) .
     *
     *
     * ACCURACY:
     *
     *                      Relative error:
     * arithmetic   domain      # trials      peak         rms
     *    IEEE     +-5.5e11      200,000    1.2e-19     2.9e-20
     * 
     * ERROR MESSAGES:
     *
     *   message           condition        value returned
     * sin total loss   x > 2**39               0.0
     *
     * Loss of precision occurs for x > 2**39 = 5.49755813888e11.
     * The routine as implemented flags a TLOSS error for
     * x > 2**39 and returns 0.0.
     */
    
     
    /*							cosl.c
     *
     *	Circular cosine, long double precision
     *
     *
     *
     * SYNOPSIS:
     *
     * long double x, y, cosl();
     *
     * y = cosl( x );
     *
     *
     *
     * DESCRIPTION:
     *
     * Range reduction is into intervals of pi/4.  The reduction
     * error is nearly eliminated by contriving an extended precision
     * modular arithmetic.
     *
     * Two polynomial approximating functions are employed.
     * Between 0 and pi/4 the cosine is approximated by
     *      1 - .5 x**2 + x**4 Q(x**2) .
     * Between pi/4 and pi/2 the sine is represented by the Cody
     * and Waite polynomial form
     *      x  +  x**3 P(x**2) .
     *
     *
     * ACCURACY:
     *
     *                      Relative error:
     * arithmetic   domain      # trials      peak         rms
     *    IEEE     +-5.5e11       50000      1.2e-19     2.9e-20
     */
    
     
    /*							sqrtl.c
     *
     *	Square root, long double precision
     *
     *
     *
     * SYNOPSIS:
     *
     * long double x, y, sqrtl();
     *
     * y = sqrtl( x );
     *
     *
     *
     * DESCRIPTION:
     *
     * Returns the square root of x.
     *
     * Range reduction involves isolating the power of two of the
     * argument and using a polynomial approximation to obtain
     * a rough value for the square root.  Then Heron's iteration
     * is used three times to converge to an accurate value.
     *
     * Note, some arithmetic coprocessors such as the 8087 and
     * 68881 produce correctly rounded square roots, which this
     * routine will not.
     *
     * ACCURACY:
     *
     *
     *                      Relative error:
     * arithmetic   domain     # trials      peak         rms
     *    IEEE      0,10        30000       8.1e-20     3.1e-20
     *
     *
     * ERROR MESSAGES:
     *
     *   message         condition      value returned
     * sqrt domain        x < 0            0.0
     *
     */
    
     
    /*							stdtrl.c
     *
     *	Student's t distribution
     *
     *
     *
     * SYNOPSIS:
     *
     * long double p, t, stdtrl();
     * int k;
     *
     * p = stdtrl( k, t );
     *
     *
     * DESCRIPTION:
     *
     * Computes the integral from minus infinity to t of the Student
     * t distribution with integer k > 0 degrees of freedom:
     *
     *                                      t
     *                                      -
     *                                     | |
     *              -                      |         2   -(k+1)/2
     *             | ( (k+1)/2 )           |  (     x   )
     *       ----------------------        |  ( 1 + --- )        dx
     *                     -               |  (      k  )
     *       sqrt( k pi ) | ( k/2 )        |
     *                                   | |
     *                                    -
     *                                   -inf.
     * 
     * Relation to incomplete beta integral:
     *
     *        1 - stdtr(k,t) = 0.5 * incbet( k/2, 1/2, z )
     * where
     *        z = k/(k + t**2).
     *
     * For t < -1.6, this is the method of computation.  For higher t,
     * a direct method is derived from integration by parts.
     * Since the function is symmetric about t=0, the area under the
     * right tail of the density is found by calling the function
     * with -t instead of t.
     * 
     * ACCURACY:
     *
     * Tested at random 1 <= k <= 100.  The "domain" refers to t.
     *                      Relative error:
     * arithmetic   domain     # trials      peak         rms
     *    IEEE     -100,-1.6    10000       5.7e-18     9.8e-19
     *    IEEE     -1.6,100     10000       3.8e-18     1.0e-19
     */
    
     
    /*							stdtril.c
     *
     *	Functional inverse of Student's t distribution
     *
     *
     *
     * SYNOPSIS:
     *
     * long double p, t, stdtril();
     * int k;
     *
     * t = stdtril( k, p );
     *
     *
     * DESCRIPTION:
     *
     * Given probability p, finds the argument t such that stdtrl(k,t)
     * is equal to p.
     * 
     * ACCURACY:
     *
     * Tested at random 1 <= k <= 100.  The "domain" refers to p:
     *                      Relative error:
     * arithmetic   domain     # trials      peak         rms
     *    IEEE       0,1        3500       4.2e-17     4.1e-18
     */
    
     
    /*							tanhl.c
     *
     *	Hyperbolic tangent, long double precision
     *
     *
     *
     * SYNOPSIS:
     *
     * long double x, y, tanhl();
     *
     * y = tanhl( x );
     *
     *
     *
     * DESCRIPTION:
     *
     * Returns hyperbolic tangent of argument in the range MINLOGL to
     * MAXLOGL.
     *
     * A rational function is used for |x| < 0.625.  The form
     * x + x**3 P(x)/Q(x) of Cody & Waite is employed.
     * Otherwise,
     *    tanh(x) = sinh(x)/cosh(x) = 1  -  2/(exp(2x) + 1).
     *
     *
     *
     * ACCURACY:
     *
     *                      Relative error:
     * arithmetic   domain     # trials      peak         rms
     *    IEEE      -2,2        30000       1.3e-19     2.4e-20
     *
     */
    
     
    /*							tanl.c
     *
     *	Circular tangent, long double precision
     *
     *
     *
     * SYNOPSIS:
     *
     * long double x, y, tanl();
     *
     * y = tanl( x );
     *
     *
     *
     * DESCRIPTION:
     *
     * Returns the circular tangent of the radian argument x.
     *
     * Range reduction is modulo pi/4.  A rational function
     *       x + x**3 P(x**2)/Q(x**2)
     * is employed in the basic interval [0, pi/4].
     *
     *
     *
     * ACCURACY:
     *
     *                      Relative error:
     * arithmetic   domain     # trials      peak         rms
     *    IEEE     +-1.07e9       30000     1.9e-19     4.8e-20
     *
     * ERROR MESSAGES:
     *
     *   message         condition          value returned
     * tan total loss   x > 2^39                0.0
     *
     */
    
     
    /*							cotl.c
     *
     *	Circular cotangent, long double precision
     *
     *
     *
     * SYNOPSIS:
     *
     * long double x, y, cotl();
     *
     * y = cotl( x );
     *
     *
     *
     * DESCRIPTION:
     *
     * Returns the circular cotangent of the radian argument x.
     *
     * Range reduction is modulo pi/4.  A rational function
     *       x + x**3 P(x**2)/Q(x**2)
     * is employed in the basic interval [0, pi/4].
     *
     *
     *
     * ACCURACY:
     *
     *                      Relative error:
     * arithmetic   domain     # trials      peak         rms
     *    IEEE     +-1.07e9      30000      1.9e-19     5.1e-20
     *
     *
     * ERROR MESSAGES:
     *
     *   message         condition          value returned
     * cot total loss   x > 2^39                0.0
     * cot singularity  x = 0                  INFINITYL
     *
     */
    
     
    /*							unityl.c
     *
     * Relative error approximations for function arguments near
     * unity.
     *
     *    cosm1(x) = cos(x) - 1
     *
     */
    
     
    /*							ynl.c
     *
     *	Bessel function of second kind of integer order
     *
     *
     *
     * SYNOPSIS:
     *
     * long double x, y, ynl();
     * int n;
     *
     * y = ynl( n, x );
     *
     *
     *
     * DESCRIPTION:
     *
     * Returns Bessel function of order n, where n is a
     * (possibly negative) integer.
     *
     * The function is evaluated by forward recurrence on
     * n, starting with values computed by the routines
     * y0l() and y1l().
     *
     * If n = 0 or 1 the routine for y0l or y1l is called
     * directly.
     *
     *
     *
     * ACCURACY:
     *
     *
     *       Absolute error, except relative error when y > 1.
     *       x >= 0,  -30 <= n <= +30.
     * arithmetic   domain     # trials      peak         rms
     *    IEEE     -30, 30       10000       1.3e-18     1.8e-19
     *
     *
     * ERROR MESSAGES:
     *
     *   message         condition      value returned
     * ynl singularity   x = 0              MAXNUML
     * ynl overflow                         MAXNUML
     *
     * Spot checked against tables for x, n between 0 and 100.
     *
     */
    

      Up to home page:

      Get ldouble.zip:
    The URL of this file is http://www.moshier.net/index.html.
    Last update: 11 August 2000